scholarly journals Apelin-13 Decreases Epithelial Sodium Channel (ENaC) Expression and Activity in Kidney Collecting Duct Cells

2022 ◽  
Vol 56 (1) ◽  
pp. 1-12

BACKGROUND/AIMS: Apelin and its G protein-coupled receptor APLNR (also known as APJ) are widely expressed within the central nervous system and peripheral organs including heart, lung and kidney. Several studies have shown that the apelin/APJ system is involved in various important physiological processes such as energy metabolism, cardiovascular functions and fluid homeostasis. In the kidney, the apelin/APJ system performs a wide range of activities. We recently demonstrated that apelin antagonises the hydro-osmotic effect of vasopressin on aquaporin-2 water channel (AQP-2) expression by reducing its mRNA and protein levels in collecting duct principal cells. The central role of these cells in water and sodium transport is governed by AQP-2 and the epithelial sodium channel (ENaC). The coordination of these channels is essential for the control of extracellular fluid volume, sodium homeostasis and blood pressure. This study aimed at investigating the role of apelin in the regulation of sodium balance in the distal nephron, and more specifically its involvement in modulating the expression and activity of ENaC in collecting duct principal cells. METHODS: mpkCCD cells were incubated in the presence of aldosterone and treated with or without apelin-13. Transepithelial Na+ current was measured and the changes in ENaC expression determined by RT-PCR and immunoblotting. RESULTS: Our data show that apelin-13 reduces the transepithelial sodium amiloride-sensitive current in collecting duct principal cells after 8h and 24h treatment. This effect was associated with a decrease in αENaC subunit expression and mediated through the ERK pathway as well as SGK1 and Nedd4-2. CONCLUSION: Our findings indicate that apelin is involved in the fine regulation of sodium balance in the renal collecting duct by opposing the effects of aldosterone, likely by activation of ENaC ubiquitination.

2007 ◽  
Vol 282 (52) ◽  
pp. 37402-37411 ◽  
Author(s):  
Warren G. Hill ◽  
Michael B. Butterworth ◽  
Huamin Wang ◽  
Robert S. Edinger ◽  
Jonathan Lebowitz ◽  
...  

2003 ◽  
Vol 284 (2) ◽  
pp. C404-C414 ◽  
Author(s):  
Diego Alvarez de la Rosa ◽  
Cecilia M. Canessa

The purpose of this study was to examine the role of the serum- and glucocorticoid-induced kinase (SGK) in the activation of the epithelial sodium channel (ENaC) by aldosterone, arginine vasopressin (AVP), and insulin. We used a tetracycline-inducible system to control the expression of wild-type (SGK[Formula: see text]), constitutively active (S425D mutation; SGK[Formula: see text]), or inactive (K130M mutation; SGK[Formula: see text]) SGK in A6 cells independently of hormonal stimulation. The effect of SGK expression on ENaC activity was monitored by measuring transepithelial amiloride-sensitive short-circuit current ( I sc) of transfected A6 cell lines. Expression of SGK[Formula: see text] or SGK[Formula: see text] and aldosterone stimulation have additive effects on I sc. Although SGK could play some role in the aldosterone response, our results suggest that other mechanisms take place. SGK[Formula: see text] abrogates the responses to AVP and insulin; hence, in the signaling pathways of these hormones there is a shared step that is stimulated by SGK. Because AVP and insulin induce fusion of vesicles to the apical membrane, our results support the notion that SGK promotes incorporation of channels in the apical membrane.


2012 ◽  
Vol 303 (9) ◽  
pp. F1289-F1299 ◽  
Author(s):  
Viatcheslav Nesterov ◽  
Anke Dahlmann ◽  
Bettina Krueger ◽  
Marko Bertog ◽  
Johannes Loffing ◽  
...  

Aldosterone is thought to be the main hormone to stimulate the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT) and the entire collecting duct (CD). There is immunohistochemical evidence for an axial gradient of ENaC expression along the ASDN with highest expression in the DCT2 and CNT. However, most of our knowledge about renal ENaC function stems from studies in the cortical collecting duct (CCD). Here we investigated ENaC function in the transition zone of DCT2/CNT or CNT/CCD microdissected from mice maintained on different sodium diets to vary plasma aldosterone levels. Single-channel recordings demonstrated amiloride-sensitive Na+ channels in DCT2/CNT with biophysical properties typical for ENaC previously described in CNT/CCD. In animals maintained on a standard salt diet, the average ENaC-mediated whole cell current (Δ Iami) was higher in DCT2/CNT than in CNT/CCD. A low salt diet increased Δ Iami in CNT/CCD but had little effect on Δ Iami in DCT2/CNT. To investigate whether aldosterone is necessary for ENaC activity in the DCT2/CNT, we used aldosterone synthase knockout (AS−/−) mice that lack aldosterone. In CNT/CCD of AS−/− mice, Δ Iami was lower than that in wild-type (WT) animals and was not stimulated by a low salt diet. In contrast, in DCT2/CNT of AS−/− mice, Δ Iami was similar to that in DCT2/CNT of WT animals both on a standard and on a low salt diet. We conclude that ENaC function in the DCT2/CNT is largely independent of aldosterone which is in contrast to its known aldosterone sensitivity in CNT/CCD.


Sign in / Sign up

Export Citation Format

Share Document