scholarly journals Thermodynamic Analysis of the Reaction of High Modulus Sodium Silicate

2020 ◽  
Vol 6 (1) ◽  
pp. 14-20
Author(s):  
G. Baimuratova ◽  
G. Omurbekova

The thermodynamic method is based on the study and analysis of the formation of high-modulus sodium silicate. It is determined by the thermodynamic method of the isobaric-isothermal reaction potential using the equation of the second law of thermodynamics, the Kirchhoff law and the Gibbs equation. To conduct a thermodynamic analysis for all in the reaction of the compounds, the necessary tabular data were used, and a thermodynamic analysis was performed for four chemical reactions. Equations of changes in the isobaric-isothermal potential as a function of temperature are compiled for all reactions. Based on the results obtained, it was concluded that the first reaction is practically the most acceptable for the production of silicate energy.

Author(s):  
M. Z. Haq ◽  
M. R. Mohiuddin

The paper presents a thermodynamic analysis of a single cylinder four-stroke spark-ignition (SI) engine fuelled by four fuels namely iso-octane, methane, methanol and hydrogen. In SI engines, due to phenomena like ignition delay and finite flame speed manifested by the fuels, the heat addition process is not instantaneous, and hence ‘Weibe function’ is used to address the realistic heat release scenario of the engine. Empirical correlations are used to predict the heat loss from the engine cylinder. Physical states and chemical properties of gaseous species present inside the cylinder are determined using first and second law of thermodynamics, chemical kinetics, JANAF thermodynamic data-base and NASA polynomials. The model is implemented in FORTRAN 95 using standard numerical routines and some simulation results are validated against data available in literature. The second law of thermodynamics is applied to estimate the change of exergy i.e. the work potential or quality of the in-cylinder mixture undergoing various phases to complete the cycle. Results indicate that, around 4 to 24% of exergy initially possessed by the in-cylinder mixture is reduced during combustion and about 26 to 42% is left unused and exhausted to the atmosphere.


Author(s):  
Rosa-Hilda Chavez ◽  
Jazmin Cortez-Gonzalez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

The present paper describes the thermodynamic analysis of the carbon dioxide (CO2) gas removal process in two separated columns with absorption/stripping sections respectively. This process is characterized as mass transfer enhanced by chemical reaction, in which the presence of an alkanolamine enhances the solubility of an acid gas in the aqueous phase at a constant value of the equilibrium partial pressure. A very useful procedure for analyzing a process is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, they point out where the irreversibilities of the process are located, and provide a generalized discussion from the successful application of the technique.


Author(s):  
Ali Gholizadeh ◽  
M. B. Shafii ◽  
M. H. Saidi

In modeling and designing micro combined heat and power cycle most important point is recognition of how the cycle operates based on the first and second laws of thermodynamics simultaneously. Analyzing data obtained from thermodynamic analysis employed to optimize MCHP cycle. The data obtained from prime mover optimization has been used for basic stimulus cycle. Assumptions considered for prime mover optimization has been improved, for example in making optimum operation condition by using genetic algorithms constant pressure combustion chamber was considered. The exact value of downstream and upstream pressure changes in the combustion chamber reaction has been obtained. After extraction of the appropriate relationship for the primary stimulus cycle, data required for the overall cycle analysis identified, By using these data optimum total cycle efficiency and constructing the first and second laws of thermodynamics has been calculated for it. After reviewing Thermodynamic governing relations in each cycle and using the optimum values that the prime mover has been optimized with, other cycles have been optimized. In best performance condition of cycle, electrical efficiency was 41 percent and the overall efficiency of the cycle was 88 percent, respectively. After using the second law of thermodynamics mathematical model Second law of thermodynamics efficiency and entropy production rate was estimated. Second law of thermodynamics yield best performance against the 45.14 percent and the rate of entropy production in this case equal to 0.099 kW/K respectively.


Author(s):  
R. Hilda Cha´vez ◽  
Javier de J. Guadarrama ◽  
Abel Herna´ndez-Guerrero

The present paper describes the thermodynamic analysis of the first stage of enrichment of heavy water production by the Girdler Sulfide (GS) process. A very useful procedure for analyzing a proces is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concept of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes. Furthermore, this study points out where the irreversibilities of the process are located, and provides a generalized discussion from the successful application of the technique.


2019 ◽  
Author(s):  
PierGianLuca Porta Mana

The hypothetical possibility of distinguishing preparations described by non-orthogonal density matrices does not necessarily imply a violation of the second law of thermodynamics, as was instead stated by von Neumann. On the other hand, such a possibility would surely mean that the particular density-matrix space (and related Hilbert space) adopted would not be adequate to describe the hypothetical new experimental facts. These points are shown by making clear the distinction between physical preparations and the density matrices which represent them, and then comparing a "quantum" thermodynamic analysis given by Peres with a "classical" one given by Jaynes.


Sign in / Sign up

Export Citation Format

Share Document