Sixty years of broken symmetries in quantum physics (from the Bogoliubov theory of superfluidity to the Standard Model)

2009 ◽  
Vol 52 (6) ◽  
pp. 549-557 ◽  
Author(s):  
Dmitrii V Shirkov
2009 ◽  
Vol 24 (35n37) ◽  
pp. 2802-2802 ◽  
Author(s):  
DMITRY V. SHIRKOV

A retrospective historical overview of the phenomenon of spontaneous symmetry breaking (SSB) in quantum theory, the issue that has been implemented in particle physics in the form of the Higgs mechanism. The main items are: – The Bogoliubov's microscopical theory of superfluidity (1946); – The BCS-Bogoliubov theory of superconductivity (1957); – Superconductivity as a superfluidity of Cooper pairs (Bogoliubov - 1958); – Transfer of the SSB into the QFT models (early 60s); – The Higgs model triumph in the electro-weak theory (early 80s). The role of the Higgs mechanism and its status in the current Standard Model is also touched upon. Note from Publisher: This article contains the abstract only.


2015 ◽  
Vol 03 (01) ◽  
pp. 46-61 ◽  
Author(s):  
Claude Daviau ◽  
Jacques Bertrand

2020 ◽  
Vol 5 (10) ◽  
pp. 1294-1296
Author(s):  
Ulrich Bruchholz ◽  
Horst Eckardt

The physical standard model is used to date to explain microscopic structure of nature on a more or less phenomenological basis. In this article, three principal approaches of physics are compared, which are foundational for classical theoretical physics of the 20th century: The General Relativity of Einstein, the theory of Rainich, which uses the Einstein-Maxwell equations, a first unification of phsics, and the Einsten-Cartan-Evans theory of Myron Evans. The latter unifies classical and quantum physics. The discussed methods take us beyond the standard model. Special focus is set to the known Einstein-Maxwell equations, for which a novel solution scheme was developed by Bruchholz. Consistently, quantities of elementary particles can be predicted on base of a classical theory.


2020 ◽  
Author(s):  
Stephane Maes

In a multi-fold universe, gravity emerges from Entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles that they be real or virtual. Long range, massless gravity results from entanglement of massless virtual particles. Entanglement of massive virtual particles leads to massive gravity contributions at very smalls scales. Multi-folds mechanisms also result into a spacetime that is discrete, with a random walk fractal structure and non-commutative geometry that is Lorentz invariant and where spacetime nodes and particles can be modeled with microscopic black holes. All these recover General Relativity (GR) at large scales and semi-classical model remain valid till smaller scale than usually expected. Gravity can therefore be added to the Standard Model. This can contribute to resolving several open issues with the Standard Model. The present paper examines what can be said of time in a multi-fold universe: what is the notion of time, does it exist or make sense and is it continuous or discrete and is there an arrow of time? In particular, we discuss how multi-fold universe handles the well-known time problem, the Bryce Wheeler equation as well as the explanations proposed so far by Page and Wootters and the subsequent rigorous expansions of Gambini and Pullin. In a multi-fold universe, time can concretely exist both because of entanglement and its random walk constructive nature that renders spacetime, including time discrete, fractal and non-commutative within a spacetime geometry, yet become not observable at larger scales. Therefore, random walks and entanglement concretize time and entanglement is also responsible for the arrow of time: the multi-folds mechanisms are irreversible, yet they can appear reversible if not fully modeled, which explains why Quantum Physics and GR appear essentially reversible. When putting all these consideration together it becomes clear that random walks and entanglement not only generate and shape spacetime but they also are at the core of the concept of time and how it can be perceived by us.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


Sign in / Sign up

Export Citation Format

Share Document