scholarly journals 60 YEARS OF BROKEN SYMMETRIES IN QUANTUM PHYSICS: FROM THE BOGOLIUBOV THEORY OF SUPERFLUIDITY TO THE STANDARD MODEL

2009 ◽  
Vol 24 (35n37) ◽  
pp. 2802-2802 ◽  
Author(s):  
DMITRY V. SHIRKOV

A retrospective historical overview of the phenomenon of spontaneous symmetry breaking (SSB) in quantum theory, the issue that has been implemented in particle physics in the form of the Higgs mechanism. The main items are: – The Bogoliubov's microscopical theory of superfluidity (1946); – The BCS-Bogoliubov theory of superconductivity (1957); – Superconductivity as a superfluidity of Cooper pairs (Bogoliubov - 1958); – Transfer of the SSB into the QFT models (early 60s); – The Higgs model triumph in the electro-weak theory (early 80s). The role of the Higgs mechanism and its status in the current Standard Model is also touched upon. Note from Publisher: This article contains the abstract only.

2015 ◽  
Vol 24 (12) ◽  
pp. 1544009 ◽  
Author(s):  
C. S. Unnikrishnan ◽  
George T. Gillies

In this paper, we raise and discuss the fundamental issue whether the interaction-induced inertia in the Higgs mechanism is the same as the charge of gravity or the gravitational mass. True physical mass has to fulfill the dual role of inertia and the gravitational charge, and should respect the weak equivalence principle. This is not yet addressed in the standard model that does not incorporate gravity. Hence, the Higgs scenario still requires a gravitational completion. Some relevant analogies where interaction-induced inertia is not the same as the gravitational charge are mentioned. Probing this line of thought will provide valuable clues and perhaps a remarkable answer to the place and role of gravity in the standard model of particle physics.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041012
Author(s):  
Pedro D. Alvarez ◽  
Mauricio Valenzuela ◽  
Jorge Zanelli

General Relativity (GR) and the Standard Model (SM) of particle physics are two enormously successful frameworks for our understanding the fundamental laws of nature. However, these theoretical schemes are widely disconnected, logically independent and unrelated in scope. Yet, GR and SM at some point must intersect, producing claims about phenomena that should be reconciled. Be it as it may, both schemes share a common basic ground: symmetry under local Lorentz transformations. Here, we will focus on the consequences of assuming this feature from the beginning to combine geometry, matter fields and gauge interactions. We give a rough description of how this could be instrumental for the construction of a unified scheme of gravitation and particle physics.


Author(s):  
Arttu Rajantie

The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.


2020 ◽  
pp. 1-3
Author(s):  
Housam H Safadi ◽  

The Standard Model of particle physics is thought to be the best map that describes our life. For this reason, it could embed dark matter and reason gravity. In this exploration, I am looking at Standard Model through a new approach different from merely classifying particles as fermions and bosons. I will search in them for the concept and role of massiveness. Specifying photons and gluons as the unique bosons declared in Standard Model, I go looking for revealing the secrets of Higgs particle, Z and W-, which should not be visible matter bosons


2015 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Nguyen Anh Ky ◽  
Nguyen Thi Hong Van

The standard model has postulated the existence of a scalar boson, named the Higgs boson (or the Brout-Englert-Higgs boson, for more complete). This boson plays a central role in a symmetry breaking scheme called the Higgs mechanism making the standard model realistic. However, until recently at least, the 50-year-long-sought Higgs boson had remained the only particle in the standard model not yet discovered experimentally. It is the last but very important missing ingredient of the standard model. Therefore, searching for the Higgs boson is a crucial task and an important mission of particle physics. For this purpose, many theoretical works have been done and dierent experiments have been organized. It may be said in particular that to search for the Higgs boson has been one of the ultimatums of building and running the LHC, the world's largest and most powerful particle accelerator, at CERN, which is a great combination of science and technology. Recently, in the summer of 2012, ATLAS and CMS, the two biggest and general- purpose LHC collaborations, announced the discovery of a new boson with a mass around 125 GeV. Since then, for over two years, ATLAS, CMS and other collaborations have carried out intensive investigations on the newly discovered boson to conrm that this new boson is really the Higgs boson (of the standard model). It is a triumph of science and technology and international cooperation. Here, we will review the main results of these investigations after presenting a brief introduction to the Higgs boson between the theoretical framework of the standard model and Higgs mechanism as well as a theoretical and experimental background of searching for it. This paper may attract interest of not only particle physicists but also a broader audience.


Sign in / Sign up

Export Citation Format

Share Document