Omori's law: a note on the history of geophysics

2017 ◽  
Vol 60 (3) ◽  
pp. 319-324 ◽  
Author(s):  
A V Guglielmi
2017 ◽  
Vol 187 (03) ◽  
pp. 343-348 ◽  
Author(s):  
Anatol V. Guglielmi

Isis ◽  
1986 ◽  
Vol 77 (2) ◽  
pp. 349-351
Author(s):  
William Glen

Eos ◽  
1991 ◽  
Vol 72 (10) ◽  
pp. 106-106
Author(s):  
C. S. Gilmor

2014 ◽  
Vol 5 (2) ◽  
pp. 163-174 ◽  
Author(s):  
F. Ozcep ◽  
T. Ozcep

Abstract. In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.


2005 ◽  
Vol 23 (5) ◽  
pp. 1593-1602
Author(s):  
F. Sigernes ◽  
N. Lloyd ◽  
D. A. Lorentzen ◽  
R. Neuber ◽  
U.-P. Hoppe ◽  
...  

Abstract. On 6 December 2002, during winter darkness, an extraordinary event occurred in the sky, as viewed from Longyearbyen (78° N, 15° E), Svalbard, Norway. At 07:30 UT the southeast sky was surprisingly lit up in a deep red colour. The light increased in intensity and spread out across the sky, and at 10:00 UT the illumination was observed to reach the zenith. The event died out at about 12:30 UT. Spectral measurements from the Auroral Station in Adventdalen confirm that the light was scattered sunlight. Even though the Sun was between 11.8 and 14.6deg below the horizon during the event, the measured intensities of scattered light on the southern horizon from the scanning photometers coincided with the rise and setting of the Sun. Calculations of actual heights, including refraction and atmospheric screening, indicate that the event most likely was scattered solar light from a target below the horizon. This is also confirmed by the OSIRIS instrument on board the Odin satellite. The deduced height profile indicates that the scattering target is located 18–23km up in the stratosphere at a latitude close to 73–75° N, southeast of Longyearbyen. The temperatures in this region were found to be low enough for Polar Stratospheric Clouds (PSC) to be formed. The target was also identified as PSC by the LIDAR systems at the Koldewey Station in Ny-Ålesund (79° N, 12° E). The event was most likely caused by solar illuminated type II Polar Stratospheric Clouds that scattered light towards Svalbard. Two types of scenarios are presented to explain how light is scattered. Keywords. Atmospheric composition and structure (Transmissions and scattering of radiation; Middle atmospherecomposition and chemistry; Instruments and techniques) – History of geophysics (Atmospheric Sciences; The red-sky phenomena)


2005 ◽  
Vol 23 (5) ◽  
pp. 1959-1961
Author(s):  

Abstract. In this short contribution the use of different sunspot numbers for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations realised by Schröder et al. (2004) is analysed. Moreover, some comments are made on the relationships between mean annual visual observations of the auroras at middle latitudes of Europe and the mean annual sunspot number during 1780–1829. Keywords. Atmospheric composition and structure (Airglow and aurora) – Magnetospheric physics (Auroral phenomena, solar wind-magnetosphere interactions) – History of geophysics (Solar-planetary relationship)


2005 ◽  
Vol 23 (5) ◽  
pp. 1523-1531 ◽  
Author(s):  
S. A. Chernouss ◽  
G. V. Starkov ◽  
L. S. Yevlashin

Abstract. This report presents data and analysis of visual, photographic and auroral spectral data, obtained by the Russian astronomer J. Sykora from the Russian-Swedish expedition to Spitsbergen during the 1899–1900 winter season, which are historically significant for auroral studies. These data seem to be the first instrumental observations of auroral spectra in the Arctic and some of the emissions discovered have world priority. The second known photos in the world of aurora from the Arctic and undoubtedly the first ones for geomagnetic latitudes of about 75° in the Spitsbergen Archipelago were obtained. The results of the expedition are discussed from a modern point of view and compared with our knowledge of the 21st century. A description of the equipment and methods that were used by Russian astronomers is presented. Both photographic and spectral devices using registration by photographic plates were used, along with special methods of their development and enhancement. Some statistical analysis was done on the basis of the expedition reports and diaries. This analysis shows that by using Sykora's data it was possible to discover the auroral oval or instantaneous auroral distribution over the polar region. Analysis of photographic samples and sketches of the aurora demonstrate typical auroral form outlines as they are described today. Spectral plates exposed for several hours to auroral lights revealed not only the main auroral emissions, which were well-known at that time, but several other unidentified weak emissions, which were rediscovered and interpreted years later. Keywords. History of geophysics (Atmospheric sciences, instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document