Lasers Based on Complex Organic Compounds

1972 ◽  
Vol 108 (12) ◽  
pp. 761
Author(s):  
B.I. Stepanov
1998 ◽  
Vol 38 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M. Roš ◽  
J. Vrtovšek

A combined anaerobic anoxic aerobic reactor for the treatment of the industrial wastewater that contains nitrogen and complex organic compounds as well as its design procedure is presented. The purpose of our experiments was to find a simple methodology that would provide combined reactor design. The reactor is based on the combination of anaerobic, anoxic and aerobic process in one unit only. It was found that the HRT even under 1 hour in the anaerobic zone is long enough for the efficient transformation of complex organic compounds into readily biodegradable COD which is then used in dentrification process. In the N-NO3 concentration range 1.5-50 mg/l the denitrification rate could be expressed as half-order reaction when the CODrb was in excess. N-NO3 removal efficiency is controlled by the recycle flow from the aerobic to the anoxic zone. Nitrification rate can be expressed as first, half or zero-order reaction with respect to effluent N-NH4 concentration. Nitrification rate depends on the dissolved oxygen concentration and hydrodynamic conditions in the reactor. Case study for design of a pilot plant of the combined reactor for treatment of pre-treated pharmaceutical wastewater is shown. Characteristics of pre-treated wastewater were: COD=200 mg/l, BOD5=20 mg/l, N-Kjeldahl=80 mg/l, N-NH4=70 mg/l, N-NOx<1 mg/l, P-PO4=5 mg/l. Legal requirements for treated wastewater were: COD=<100 mg/l, BOD5<5 mg/l, N-NH4=<1 mg/l, N-NOx=<10 mg/l.


1979 ◽  
Vol 83 (1) ◽  
pp. 283-292
Author(s):  
ROGER LUBBOCK

The response of nematocytes in the anemone Stichodactyla haddoni to contact with complex organic compounds varies according to the 9ubstance concerned and in most cases according to the level of accompanying mechanical stimulation. Compounds with a proteinaceous moiety differ in their capacity to excite nematocytes, but usually tend to induce a stronger response than polysaccharides or lipids. Nematocyst discharge against foreign animals appears to be the result of a sophisticated cellular recognition process in which the nematocytes, and/or cells closely associated with them, respond to physical contact with a surface of appropriate chemical composition.


2020 ◽  
Vol 500 (1) ◽  
pp. 1188-1200
Author(s):  
Killian Leroux ◽  
Lahouari Krim

ABSTRACT Methanol, which is one of the most abundant organic molecules in the interstellar medium, plays an important role in the complex grain surface chemistry that is believed to be a source of many organic compounds. Under energetic processing such as ultraviolet (UV) photons or cosmic rays, methanol may decompose into CH4, CO2, CO, HCO, H2CO, CH3O and CH2OH, which in turn lead to complex organic molecules such as CH3OCHO, CHOCH2OH and HOCH2CH2OH through radical recombination reactions. However, although molecular oxygen and its detection, abundance and role in the interstellar medium have been the subject of many debates, few experiments on the oxidation of organic compounds have been carried out under interstellar conditions. The present study shows the behaviour of solid methanol when treated by UV light and thermal processing in oxygen-rich environments. Methanol has been irradiated in the absence and presence of O2 at different concentrations in order to study how oxidized complex organic molecules may form and also to investigate the O-insertion reaction in the C–H bound to form methanediol HOCH2OH through a CH3OH + O(1D) solid-state reaction. The adding of O2 in the thermal and photochemical reaction of solid methanol leads to the formation of O3, H2O and HO2, in addition to three main organics, HCOOH, CHOCHO and HOCH2OH. We show that in an O2-rich environment, species such as CO, CH4, HCO, CH3OH and CHOCH2OH are oxidized into CO2, CH3OH, HC(O)OO, HOCH2OH and CHOCHO, respectively, while HCOOH might be formed through the H2CO + O(3P) → (OH + HCO)cage → HCOOH hydrogen-abstraction reaction.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75491-75498 ◽  
Author(s):  
Kaoru Ikuma ◽  
Zhiwei Shi ◽  
Amy V. Walker ◽  
Boris L. T. Lau

Proteins are often an important component of many bulk surfaces in biological and environmental systems that are coated with complex organic compounds that may also interact with nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document