Production Costs, Inefficiency, and Source Water Quality: A Stochastic Cost Frontier Analysis of Canadian Water Utilities

2017 ◽  
Vol 93 (1) ◽  
pp. 1-11 ◽  
Author(s):  
James I. Price ◽  
Steven Renzetti ◽  
Diane Dupont ◽  
Wiktor Adamowicz ◽  
Monica B. Emelko
2005 ◽  
Vol 52 (9) ◽  
pp. 235-242
Author(s):  
J.G. Schulte ◽  
A.H. Vicory

Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.


2010 ◽  
Vol 39 (4) ◽  
pp. 1388-1401 ◽  
Author(s):  
Nigro Joseph ◽  
Toll David ◽  
Partington Ed ◽  
Wenge Ni-Meister ◽  
Lee Shihyan ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 2098-2106
Author(s):  
Chelsea W. Neil ◽  
Yingying Zhao ◽  
Amy Zhao ◽  
Jill Neal ◽  
Maria Meyer ◽  
...  

Abstract Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation–flocculation–sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.


2014 ◽  
Vol 2014 (14) ◽  
pp. 2625-2640
Author(s):  
Alice E. Towey ◽  
John M. Hake ◽  
Erika R. Gardner ◽  
Joseph A. Augustine

Sign in / Sign up

Export Citation Format

Share Document