Effectively Managing Source Water Quality Affecting Downstream Recycled Water Treatment Plants

2014 ◽  
Vol 2014 (14) ◽  
pp. 2625-2640
Author(s):  
Alice E. Towey ◽  
John M. Hake ◽  
Erika R. Gardner ◽  
Joseph A. Augustine
2019 ◽  
Vol 19 (7) ◽  
pp. 2098-2106
Author(s):  
Chelsea W. Neil ◽  
Yingying Zhao ◽  
Amy Zhao ◽  
Jill Neal ◽  
Maria Meyer ◽  
...  

Abstract Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation–flocculation–sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.


2017 ◽  
Vol 12 (1) ◽  
pp. 87-96 ◽  
Author(s):  
J. S. Hyung ◽  
K. B. Kim ◽  
M. C. Kim ◽  
I. S. Lee ◽  
J. Y. Koo

Ozone dosage in most water treatment plants is operated by determining the ozone concentration with the experience of the operation. In this case, it is not economical. This study selected the factors affecting residual ozone concentration and attempted to estimate the optimum amount of hydrogen peroxide dosage for the control of the residual ozone concentration by developing a model for the prediction of the residual ozone concentration. The prediction formulas developed in this study can quickly respond to the environment of water quality and surrounding environmental factors, which change in real time, so it is judged that they could be used for the operation of the optimum ozone process, and the control of ozone dosage could be used as a new method in controlling the concentration of ozone dosage and the concentration of residual ozone.


2010 ◽  
Vol 39 (4) ◽  
pp. 1388-1401 ◽  
Author(s):  
Nigro Joseph ◽  
Toll David ◽  
Partington Ed ◽  
Wenge Ni-Meister ◽  
Lee Shihyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document