scholarly journals A HYBRID KANSEI ENGINEERING SYSTEM USING THE SELF-ORGANIZING MAP NEURAL NETWORK

2016 ◽  
Vol 2 (1) ◽  
pp. 23-38
Author(s):  
C.S. Teh ◽  
C.P. Lim

Kansei Engineering (KE), a technology founded in Japan initially for product design, translates human feelings into design parameters. Although various intelligent approaches to objectively model human functions and the relationships with the product design decisions have been introduced in KE systems, many of the approaches are not able to incorporate human subjective feelings and preferences into the decision-making process. This paper proposes a new hybrid KE system that attempts to make the machine-based decision-making process closely resembles the real-world practice. The proposed approach assimilates human perceptive and associative abilities into the decision-making process of the computer. A number of techniques based on the Self-Organizing Map (SOM) neural network are employed in the backward KE system to reveal the underlying data structures that are involved in the decision-making process. A case study on interior design is presented to evaluate the efficacy of the proposed approach. The results obtained demonstrate the effectiveness of the proposed approach in developing an intelligent KE system which is able to combine human feelings and preferences into its decision making process.

2009 ◽  
Vol 18 (08) ◽  
pp. 1353-1367 ◽  
Author(s):  
DONG-CHUL PARK

A Centroid Neural Network with Weighted Features (CNN-WF) is proposed and presented in this paper. The proposed CNN-WF is based on a Centroid Neural Network (CNN), an effective clustering tool that has been successfully applied to various problems. In order to evaluate the importance of each feature in a set of data, a feature weighting concept is introduced to the Centroid Neural Network in the proposed algorithm. The weight update equations for CNN-WF are derived by applying the Lagrange multiplier procedure to the objective function constructed for CNN-WF in this paper. The use of weighted features makes it possible to assess the importance of each feature and to reject features that can be considered as noise in data. Experiments on a synthetic data set and a typical image compression problem show that the proposed CNN-WF can assess the importance of each feature and the proposed CNN-WF outperforms conventional algorithms including the Self-Organizing Map (SOM) and CNN in terms of clustering accuracy.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Magnus Johnsson ◽  
Christian Balkenius

We have implemented and compared four biologically motivated self-organizing haptic systems based on proprioception. All systems employ a 12-d.o.f. anthropomorphic robot hand, the LUCS Haptic Hand 3. The four systems differ in the kind of self-organizing neural network used for clustering. For the mapping of the explored objects, one system uses a Self-Organizing Map (SOM), one uses a Growing Cell Structure (GCS), one uses a Growing Cell Structure with Deletion of Neurons (GCS-DN), and one uses a Growing Grid (GG). The systems were trained and tested with 10 different objects of different sizes from two different shape categories. The generalization abilities of the systems were tested with 6 new objects. The systems showed good performance with the objects from the training set as well as in the generalization experiments. Thus the systems could discriminate individual objects, and they clustered the activities into small cylinders, large cylinders, small blocks, and large blocks. Moreover, the self-organizing ANNs were also organized according to size. The GCS-DN system also evolved disconnected networks representing the different clusters in the input space (small cylinders, large cylinders, small blocks, large blocks), and the generalization samples activated neurons in a proper subnetwork in all but one case.


2014 ◽  
Vol 563 ◽  
pp. 308-311 ◽  
Author(s):  
Yu Lian Jiang

For a water polo ball game there are multiple water polos and multiple robotic fishes in each team, seeking a reasonable task allocation plan is the key point to win the game. To resolve the problem, this paper proposed a multi-target task allocation method based on the Self-organizing map (SOM) neural network. This method takes the position of the water polos as the input vector, competes and compares the position of the water polos and robotic fishes, outputs the corresponding robotic fish of each water polo. The robotic fish will move toward the target water polo when the weight was adjusted, and will finally reach the target water polo. Simulations show that the score of the team using this method is higher than another team. The results prove the correctness and reliability of this method.


2021 ◽  
Vol 22 (9) ◽  
pp. 4443
Author(s):  
Viktor Drgan ◽  
Benjamin Bajželj

The hepatotoxic potential of drugs is one of the main reasons why a number of drugs never reach the market or have to be withdrawn from the market. Therefore, the evaluation of the hepatotoxic potential of drugs is an important part of the drug development process. The aim of this work was to evaluate the relative abilities of different supervised self-organizing algorithms in classifying the hepatotoxic potential of drugs. Two modifications of standard counter-propagation training algorithms were proposed to achieve good separation of clusters on the self-organizing map. A series of optimizations were performed using genetic algorithm to select models developed with counter-propagation neural networks, X-Y fused networks, and the two newly proposed algorithms. The cluster separations achieved by the different algorithms were evaluated using a simple measure presented in this paper. Both proposed algorithms showed a better formation of clusters compared to the standard counter-propagation algorithm. The X-Y fused neural network confirmed its high ability to form well-separated clusters. Nevertheless, one of the proposed algorithms came close to its clustering results, which also resulted in a similar number of selected models.


Author(s):  
Gehao Lu ◽  
Joan Lu

Predict uncertainty is critic in decision making process, especially for the complex systems. This chapter aims to discuss the theory involved in Self-Organizing Map (SOM) and its learning process, SOM based Trust Learning Algorithm (STL), SOM based Trust Estimation Algorithm (STL) as well as features of generated trust patterns. Several patterns are discussed within context. Both algorithms and how they are processed have been described in detail. It is found that SOM based Trust Estimation algorithm is the core algorithm that help agent make trustworthy or untrustworthy decisions.


Author(s):  
Marcos Santos da Silva ◽  
Edmar Ramos de Siqueira ◽  
Olívio Teixeira ◽  
Maria Manos ◽  
Antônio Monteiro

This work assessed the capacity of the self-organizing map, an unsupervised artificial neural network, to aid the process of territorial design through visualization and clustering methods applied to a multivariate geospatial temporal dataset. The method was applied in the case study of Sergipe‘s institutional regional partition (Territories of Identity). Results have shown that the proposed method can improve the exploratory spatial-temporal analysis capacity of policy makers that are interested in territorial typology. A new partition for rural planning was elaborated and confirmed the coherence of the Territories of Identity.


Author(s):  
Hiroyuki Sawada ◽  
Xiu-Tian Yan

Abstract Engineering design is an intensive decision making process. A designer with an informative and insightful decision making support can usually produce high quality product design solutions with less or no rework. However, with current support designers very often face challenge or even difficulties as more and more design parameters come into design decision making process when a design progresses. This paper proposes a novel approach to providing designers with such a decision support by using under-constraint design problem solver. It is argued that design requirements represented in the form of Product Design Specifications (PDSs) can be converted into a set of related constraint expressions. These PDS constraint sets, which are usually incomplete, i.e., under-constrained, can then be solved by the solver to provide a designer with guided solutions for each design parameter, thus support a designer to make an informative and insightful design decision. A case study is finally presented in the paper to demonstrate how this approach is used to solve a real engineering design problem — a robotic finger system design.


Sign in / Sign up

Export Citation Format

Share Document