Effect of Irrigation water quality frequency on water use efficiency and growth of sorghum crop under different soil moisture levels

2008 ◽  
Vol 21 (2) ◽  
pp. 211-233
1984 ◽  
Vol 20 (2) ◽  
pp. 151-159
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


1984 ◽  
Vol 20 (2) ◽  
pp. 151-159 ◽  
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


2020 ◽  
Vol 14 (3) ◽  
pp. 393-401
Author(s):  
Germán Eduardo Cely-Reyes ◽  
Karen Victoria Suárez-Parra ◽  
Rosalina González-Forero

The bulb onion is one of the most important agricultural products in Colombia. The productive conditions of the Riego del Alto Chicamocha (Boyaca) district are a regional and national benchmark for this market. The objective of this research was to evaluate four irrigation regimes in terms of production and irrigation water efficiency in bulb onion crops. This trial was in the municipality of Nobsa, village of Dicho (Boyaca). A completely randomized design with four treatments was used: irrigation regime with 150% evapotranspiration (Evt); moisture-based irrigation regime, detected with soil moisture sensors; irrigation regime with 100% Evt; irrigation regime with 60% Evt, along with four repetitions. Starting three weeks after transplant and for 11 weeks (77 days), the polar diameter (cm), equatorial diameter (cm), root length (cm), leaf length (cm), SPAD units, stomatal conductance and irrigation water use efficiency were determined. The irrigation regime with 100% Evt had the best performance in terms of the polar and equatorial diameters and the root and leaf lengths, which were reflected in the fresh weight at harvest. The irrigation regime with soil moisture values obtained from remote sensors, with lower amounts of applied water, had better values for the transformation of water to fresh mass, with 13.64 kg mm-1.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


Author(s):  
Recep Cakir

The article contains data obtained from evaluations related to irrigation water use efficiency (IWUE) and water use efficiency (WUE), for the main crops, irrigated at different stages of growth, on the basis of some findings obtained in the Research Institute in Kırklareli. Each of the experimental crops was sown and farmed following procedures applied by the farmers in the region, except of the irrigation applications which were based on the sensitivity of a certain crop to water shortage in the soil, during the specific growth stages. Similar procedures were applied and all the experimental treatments were irrigated at growth stages, as predicted in the research methodology, and water amounts required to fill the 0-90 cm soil depth to field capacity were implied. Evaluation data obtained from the field experiments with three major crops, grown on the non-coastal lands of Thrace Region showed, that the productivity of irrigation water, as well as water use efficiencies of all analysed crops, are growth stage controlled. The highest IWUE and WUE efficiencies of 0.87 and 0.92 kg da-1 m-3; and 1.08 kg da-1 m-3 and 0.81 kg da-1 m-3; were determined for wheat and sunflower crops, irrigated at booting and flowering stages, respectively. Each m3 of irrigation water, applied during the most sensitive fruit formation stage (Ff) of pumpkin crop, provided additionally 8.47 kg da-1 fruit yield, 8.09 fruit numbers and 0.28 kg da-1 seed yields, more than those of rainfed farming (R).


Sign in / Sign up

Export Citation Format

Share Document