scholarly journals BRITTLE DESTRUCTION OF INCOMPRESSIBLE MATERIAL DURING FLAT STRAIN

2019 ◽  
Vol 2 (5) ◽  
pp. 89-97
Author(s):  
Anvar Chanyshev ◽  
Olga Belousova ◽  
Olga Lukyashko

In the paper stress-strain behavior of solid during flat strain in case of its volumetric incompressible behavior and ideally brittle destruction is studied. Parameters of the system of differential equations of balance and its correlations are obtained. In this case, condition of stress and strain tensors axiality is used. Boundary problem for determination of stress-strain behavior at destruction zone is formulated. As example, equations of ideally brittle out-of-limit deformation of solid in form of rectangular plate (pillar) during uniform compression are considered. It is shown that when displacement of side border of the plate is observed, it is possible to predict its destructions.

2007 ◽  
Vol 345-346 ◽  
pp. 1241-1244 ◽  
Author(s):  
Mohd. Zahid Ansari ◽  
Sang Kyo Lee ◽  
Chong Du Cho

Biological soft tissues like muscles and cartilages are anisotropic, inhomogeneous, and nearly incompressible. The incompressible material behavior may lead to some difficulties in numerical simulation, such as volumetric locking and solution divergence. Mixed u-P formulations can be used to overcome incompressible material problems. The hyperelastic materials can be used to describe the biological skeletal muscle behavior. In this study, experiments are conducted to obtain the stress-strain behavior of a solid silicone rubber tube. It is used to emulate the skeletal muscle tensile behavior. The stress-strain behavior of silicone is compared with that of muscles. A commercial finite element analysis package ABAQUS is used to simulate the stress-strain behavior of silicone rubber. Results show that mixed u-P formulations with hyperelastic material model can be used to successfully simulate the muscle material behavior. Such an analysis can be used to simulate and analyze other soft tissues that show similar behavior.


Author(s):  
Stijn Hertele´ ◽  
Wim De Waele ◽  
Rudi Denys

It is standard practice to approximate the post-yield behavior of pipeline steels by means of the Ramberg-Osgood equation. However, the Ramberg-Osgood equation is often unable to accurately describe the stress-strain behavior of contemporary pipeline steels with a high Y/T ratio. This is due to the occurrence of two distinct, independent stages of strain hardening. To address this problem, the authors recently developed a new ‘UGent’ stress-strain model which provides a better description of those steels. This paper elaborates a methodology to estimate suited parameter values for the UGent model, starting from a set of tensile characteristics. Using the proposed methodology, good approximations have been obtained for a preliminary series of eight investigated stress-strain curves. Next to all common tensile characteristics, the 1% proof stress is needed. The authors therefore encourage the future acquisition of this stress level during tensile tests. Currently, the authors perform a further in-depth validation which will be reported in the near future.


2007 ◽  
Vol 546-549 ◽  
pp. 81-88
Author(s):  
Xiang Guo Zeng ◽  
Qing Yuan Wang ◽  
Jing Hong Fan ◽  
Zhan Hua Gao ◽  
Xiang He Peng

The stress-strain behavior of cast magnesium alloy (AM60) was investigated by strain-controlled cyclic testing carried out on MTS. In order to describe the cyclic stress and strain properties of AM60 by means of the energy storing characteristics of microstructure during irreversible deformation, a plastic constitutive model with no yielding surface was developed for single crystal by adopting a spring-dashpot mechanical system. Plastic dashpots reflecting the material transient response were introduced to describe the plasticity of slip systems. By utilizing the KBW self-consistent theory, a polycrystalline plastic constitutive model for Magnesium alloy was formed. The numerical analysis in the corresponding algorithm is greatly simplified as no process of searching for the activation of the slip systems and slip directions is required. The cyclic stress-strain behavior, based on this model, is discussed. The simulation results show good agreement with the experimental data for AM60.


Sign in / Sign up

Export Citation Format

Share Document