scholarly journals TO STUDY THE POSSIBILITIES OF USING THE SEISMOLOGICAL NETWORK OF THE ALTAI-SAYAN REGION FOR REGIME VIBRO-SEISMIC OBSERVATIONS

2021 ◽  
Vol 2 (2) ◽  
pp. 289-297
Author(s):  
Victor M. Solovyev ◽  
Alexander S. Salnikov ◽  
Viktor S. Seleznev ◽  
Tatyana V. Kashubina ◽  
Natalya А. Galyova

The results of deep seismic studies based on P - and S-wave data on the East-Stanov fragment of the reference 700-kilometer geophysical profile 8-DV are presented. Deep seismic sections of the upper crust (up to a depth of 20 km) with the distribution of the velocities of longitudinal and transverse waves are constructed. The P - wave velocities in the upper part of the section vary from 4-5 km / s within the Upper Zeya and Amur-Zeya depressions to 5.5-6.0 km/s within mountain ranges and plateaus; at depths of 10-20 km, lenses of high-velocity rocks up to 6.7-7.0 km/s are distinguished in the profile alignment. According to the S - waves in the upper part of the section, the velocity values are generally 3.0-3.2 km/s; reduced velocity values of 2.5-2.6 km / s are observed in the Upper Zey depression. At depths of 5-20 km within the section, according to the transverse wave data, a number of sections with reduced and increased velocity values are distinguished, respectively, up to 3.4-3.5 km/s and 3.75-3.8 km/s. The correlation of the selected anomalies according to the data of P-and S-waves is carried out.

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C21-C33 ◽  
Author(s):  
Hongwei Wang ◽  
Suping Peng ◽  
Wenfeng Du

With the incident P-wave, we derive approximate formulas for amplitudes and polarizations of waves reflected from and transmitted through a planar, horizontal boundary between an overlying isotropic medium and an underlying tilted transversely isotropic (TTI) medium assuming that the directions of the phase and group velocities are consistent. Provided that the velocities in the isotropic medium are equal to the velocities along the symmetry axis direction, we derive the relational expression between the propagation angle in the TTI medium and the propagation angle in the hypothetical isotropic medium, under the condition that the horizontal slowness is the same, and then we update the approximate formula of the polarization in the TTI medium. Provided that the slow and fast transverse waves (qS and SH) are generated simultaneously in the anisotropic interface, we linearize for a six-order Zoeppritz equation, derive the azimuthal formula of longitudinal and S-waves, and determine their detailed expressions within the symmetry axis plane. According to the derived azimuthal AVO formula, we establish medium models, compare the derived AVO with the precision, and obtain the following conclusions: (1) The dip angle for the symmetry axis with respect to the vertical may have a sufficiently large impact on AVO, and the vertical longitudinal wave can generate an S-wave. (2) For the derived AVO formula, within the symmetry axis plane, the fitting effect of the approximate and exact formulas is good; however, within the other incident planes, taking the azimuth angle 45° as an example, the approximation is suitable for the large impedance contrast if the anisotropic parameters are set properly. (3) The error between the approximation and precision is mainly caused by the difference between the reflected and transmitted angles, the velocities’ derivation with respect to azimuth, and the division of approximation into isotropic and anisotropic parts.


2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.


2002 ◽  
Vol 42 (1) ◽  
pp. 627
Author(s):  
R.G. Williams ◽  
G. Roberts ◽  
K. Hawkins

Seismic energy that has been mode converted from pwave to s-wave in the sub-surface may be recorded by multi-component surveys to obtain information about the elastic properties of the earth. Since the energy converted to s-wave is missing from the p-wave an alternative to recording OBC multi-component data is to examine p-wave data for the missing energy. Since pwave velocities are generally faster than s-wave velocities, then for a given reflection point the converted s-wave signal reaches the surface at a shorter offset than the equivalent p-wave information. Thus, it is necessary to record longer offsets for p-wave data than for multicomponent data in order to measure the same information.A non-linear, wide-angle (including post critical) AVO inversion has been developed that allows relative changes in p-wave velocities, s-wave velocities and density to be extracted from long offset p-wave data. To extract amplitudes at long offsets for this inversion it is necessary to image the data correctly, including correcting for higher order moveout and possibly anisotropy if it is present.The higher order moveout may itself be inverted to yield additional information about the anisotropy of the sub-surface.


2020 ◽  
Vol 223 (2) ◽  
pp. 1118-1129
Author(s):  
Mohammad Mahdi Abedi ◽  
Alexey Stovas

SUMMARY In exploration seismology, the acquisition, processing and inversion of P-wave data is a routine. However, in orthorhombic anisotropic media, the governing equations that describe the P-wave propagation are coupled with two S waves that are considered as redundant noise. The main approach to free the P-wave signal from the S-wave noise is the acoustic assumption on the wave propagation. The conventional acoustic assumption for orthorhombic media zeros out the S-wave velocities along three orthogonal axes, but leaves significant S-wave artefacts in all other directions. The new acoustic assumption that we propose mitigates the S-wave artefacts by zeroing out their velocities along the three orthogonal symmetry planes of orthorhombic media. Similar to the conventional approach, our method reduces the number of required model parameters from nine to six. As numerical experiments on multiple orthorhombic models show, the accuracy of the new acoustic assumption also compares well to the conventional approach. On the other hand, while the conventional acoustic assumption simplifies the governing equations, the new acoustic assumption further complicates them—an issue that emphasizes the necessity of simple approximate equations. Accordingly, we also propose simpler rational approximate phase-velocity and eikonal equations for the new acoustic orthorhombic media. We show a simple ray tracing example and find out that the proposed approximate equations are still highly accurate.


Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1512-1529 ◽  
Author(s):  
Gopa S. De ◽  
Donald F. Winterstein ◽  
Mark A. Meadows

We compared P‐ and S‐wave velocities and quality factors (Q’S) from vertical seismic profiling (VSP) and sonic log measurements in five wells, three from the southwest San Joaquin Basin of California, one from near Laredo, Texas, and one from northern Alberta. Our purpose was to investigate the bias between sonic log and VSP velocities and to examine to what degree this bias might be a consequence of dispersion. VSPs and sonic logs were recorded in the same well in every case. Subsurface formations were predominantly clastic. The bias found was that VSP transit times were greater than sonic log times, consistent with normal dispersion. For the San Joaquin wells, differences in S‐wave transit times averaged 1–2 percent, while differences in P‐wave transit times averaged 6–7 percent. For the Alberta well, the situation was reversed, with differences in S‐wave transit times being about 6 percent, while those for P‐waves were 2.5 percent. For the Texas well, the differences averaged about 4 percent for both P‐ and S‐waves. Drift‐curve slopes for S‐waves tended to be low where the P‐wave slopes were high and vice versa. S‐wave drift‐curve slopes in the shallow California wells were 5–10 μs/ft (16–33 μs/m) and the P‐wave slopes were 15–30 μs/ft (49–98 μs/m). The S‐wave slope in sandstones in the northern Alberta well was up to 50 μs/ft (164 μs/m), while the P‐wave slope was about 5 μs/ft (16 μs/m). In the northern Alberta well the slopes for both P‐ and S‐waves flattened in the carbonate. In the Texas well, both P‐ and S‐wave drifts were comparable. We calculated (Q’s) from a velocity dispersion formula and from spectral ratios. When the two Q’s agreed, we concluded that velocity dispersion resulted solely from absorption. These Q estimation methods were reliable only for Q values smaller than 20. We found that, even with data of generally outstanding quality, Q values determined by standard methods can have large uncertainties, and negative Q’s may be common.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document