scholarly journals Hydration dynamics gives the distinctive brown color in the "brown ring" nitrate test

Author(s):  
Ambar Banerjee ◽  
Michael R. Coates ◽  
Michael Odelius

The brown ring test is one of the most popular and visually appealing reagent tests, commonly known to chemistry undergrads and familiar even to school students. The exact composition, mechanism and structure of the complex has been investigated for nearly a century. Recent studies have elucidated its UV-vis, EPR and Mossbauer spectra, mechanistic details and kinetics, followed by crystallization and structure determination in solid state. Nonetheless these studies were unable to address the aspects of solution structure and dynamics of the brown ring complex. We have conducted ab initio molecular dynamics simulations of the classic brown ring complex in aqueous solution. In the process from the simulation trajectory, we have identified that the classically established pseudo-octahedral [Fe(H2O)5(NO)]2+ complex is in chemical equilibrium with the square-pyramidal [Fe(H2O)4(NO)]2+ complex through the exchange of one of the coordinated H2O molecules. The dynamics in aqueous solution between the penta-aqua and tetra-aqua complexes in the brown ring system has to our knowledge never been suggested earlier. Interestingly we find, using ab initio multi-reference quantum chemical methods i.e. CASSCF/NEVPT2 and CASPT2 calculations, that the mixture of these two complexes is what gives the distinctive brown coloration to the brown ring test. We show that its UV-vis spectrum can be theoretically reproduced only by accounting these two species, and not solely the classically established [Fe(H2O)5(NO)]2+ complex. The energetics of the penta-aqua and tetra-aqua complexes is also investigated at the level of multi-reference quantum chemical methods.

2021 ◽  
Author(s):  
Ambar Banerjee ◽  
Michael R. Coates ◽  
Michael Odelius

The chemistry of the brown-ring test has been investigated for nearly a century. Though recent studies have focused on solid state structure determination and the measurement of spectra, mechanistic details and kinetics, the aspects of solution structure and dynamics remain unknown. From ab initio molecular dynamics simulations of the brown-ring complex in aqueous solution, we have identified that the classically established pseudo-octahedral [Fe(H2O)5(NO)]2+ complex is in equilibrium with a square-pyramidal [Fe(H2O)4(NO)]2+ complex through the exchange of one of the coordinated H2O molecules. We also find, using ab-initio multi-reference methods, that the mixture of these two complexes is what gives the distinctive brown coloration to the brown-ring test. We show that its UV-vis spectrum can be theoretically reproduced only by accounting these two species and not the [Fe(H2O)5(NO)]2+ complex alone. The energetics of the two complexes are also investigated with multi-reference methods.


2020 ◽  
Vol 22 (7) ◽  
pp. 3855-3866 ◽  
Author(s):  
Junbo Chen ◽  
Bun Chan ◽  
Yihan Shao ◽  
Junming Ho

In this paper, the performance of ab initio composite methods, and a wide range of DFT methods is assessed for the calculation of interaction energies of thermal clusters of a solute in water.


1980 ◽  
Vol 45 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Vladimír Král ◽  
Zdeněk Arnold

Structure of, and charge distribution in, some aliphatic ammonium ylides were determined by quantum chemical methods (CNDO/2, INDO, MINDO/2, PCILO, ab initio-STO-3G and 4-31G bases). Non-stabilized ylides were found to have pyramidal arrangement of bonds on the ylide carbon whereas the stabilized ylides have a planar arrangement. The charge distribution in stabilized ylides indicates a significant transfer of the negative charge from the ylide carbon to the electronegative groups. The calculated dipole moments for the previously prepared compounds, as well as for the derivatives VII and X, described in this paper, agree well with the experimental value.


1980 ◽  
Vol 45 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Vladimír Král ◽  
Zdeněk Arnold

Geometric arrangement of trimethylammoniodiformylmethylide (I) and charge distribution in this compound were calculated by quantum chemical methods (EHT, CNDO/2, INDO, PCILO, MINDO/2, ab initio). Total energy minimum was found for the arrangement If. The experimentally found dipole moment agrees very well with that calculated for this conformation.


2008 ◽  
Vol 128 (19) ◽  
pp. 194503 ◽  
Author(s):  
Kestutis Aidas ◽  
Andreas Møgelhøj ◽  
Elna J. K. Nilsson ◽  
Matthew S. Johnson ◽  
Kurt V. Mikkelsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document