scholarly journals Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation

2017 ◽  
Vol 96 (4) ◽  
pp. 1015-1027 ◽  
Author(s):  
D.L. Clark ◽  
G.M. Strasburg ◽  
K.M. Reed ◽  
S.G. Velleman
2021 ◽  
Vol 12 ◽  
Author(s):  
Jiahui Xu ◽  
Gale M. Strasburg ◽  
Kent M. Reed ◽  
Sandra G. Velleman

As multipotential stem cells, satellite cells (SCs) have the potential to express adipogenic genes resulting in lipid synthesis with thermal stress. The present study determined the effect of temperature on intracellular lipid synthesis and adipogenic gene expression in SCs isolated from the pectoralis major (p. major) muscle of 7-day-old fast-growing modern commercial (NC) turkeys compared to SCs from unselected slower-growing turkeys [Randombred Control Line 2 (RBC2)]. Since proliferating and differentiating SCs have different responses to thermal stress, three incubation strategies were used: (1) SCs proliferated at the control temperature of 38°C and differentiated at 43° or 33°C; (2) SCs proliferated at 43° or 33°C and differentiated at 38°C; or (3) SCs both proliferated and differentiated at 43°, 38°, or 33°C. During proliferation, lipid accumulation increased at 43°C and decreased at 33°C with the NC line showing greater variation than the RBC2 line. During proliferation at 43°C, peroxisome proliferator-activated receptor-γ (PPARγ) and neuropeptide-Y (NPY) expression was reduced to a greater extent in the NC line than the RBC2 line. At 33°C, expression of PPARγ, NPY, and CCAAT/enhancer-binding protein-β (C/EBPβ) was upregulated, but only in the RBC2 line. During differentiation, both lines showed greater changes in lipid accumulation and in C/EBPβ and NPY expression if the thermal challenge was initiated during proliferation. These data suggest that adipogenic gene expression is more responsive to thermal challenge in proliferating SCs than in differentiating SCs, and that growth-selection has increased temperature sensitivity of SCs, which may significantly affect breast muscle structure and composition.


2009 ◽  
Vol 102 (6) ◽  
pp. 848-857 ◽  
Author(s):  
Kaiqing Rao ◽  
Jingjing Xie ◽  
Xiaojing Yang ◽  
Lei Chen ◽  
Roland Grossmann ◽  
...  

The present study was aimed to investigate the mechanism underlying the influence of maternal low-protein (LP) diet on offspring growth in the chicken. One hundred and twenty Chinese inbred Langshan breeder hens were allocated randomly into two groups fed diets containing low (10 %, LP) or normal (15 %) crude protein levels. Low dietary protein did not affect the body weight of hens, but significantly decreased the laying rate and egg weight. The yolk leptin content was significantly lower in eggs laid by LP hens, while no differences were detected for yolk contents of corticosterone, tri-iodothyronine (T3) or thyroxine. Despite significantly lower hatch weight, the LP offspring demonstrated obviously higher serum T3 concentration, which is in accordance with the faster post-hatch growth rate achieving significantly heavier body weight and pectoralis major muscle weight 4 weeks post-hatching. Expression of 20-hydroxysteroid dehydrogenase (20-HSD) mRNA in the yolk-sac membrane was significantly down-regulated at embryonic day 14, whereas that of transthyretin and leptin receptor (LepR) was not altered. Moreover, hypothalamic expression of 20-HSD, glucocorticoid receptors, thyrotropin-releasing hormone and LepR mRNA was significantly up-regulated in the LP group compared with their control counterparts. In the pectoralis major muscle, significantly higher expression of insulin-like growth factor (IGF)-I and IGF-I receptor mRNA was observed in LP embryos. The present study provides evidence that maternal LP diet programmes post-hatch growth of the offspring. The associated alterations in yolk leptin deposition as well as in yolk-sac membrane, fetal hypothalamus and muscle gene expression may be involved in mediating such programming effect in the chicken.


Author(s):  
Juniper A. Lake ◽  
Michael B. Papah ◽  
Behnam Abasht

Wooden breast is a muscle disorder affecting modern commercial broiler chickens that causes a palpably firm pectoralis major muscle and severe reduction in meat quality. Most studies have focused on advanced stages of wooden breast apparent at market age, resulting in limited insights into the etiology and early pathogenesis of the myopathy. Therefore, the objective of this study was to identify early molecular signals in the wooden breast transcriptional cascade by performing gene expression analysis on the pectoralis major muscle of two-week-old birds that may later exhibit the wooden breast phenotype by market age at 7 weeks. Biopsy samples of the left pectoralis major muscle were collected from a subset of 101 birds randomly selected from a total of 302 birds at 14 days of age, after which all birds were raised to 7 weeks of age for scoring of wooden breast. RNA sequencing was performed on 5 unaffected and 8 affected female chicken samples, selected based on wooden breast scores (0 to 4) assigned at necropsy where affected birds had scores of 2 or 3 (mildly or moderately affected) while unaffected birds had scores of 0 (no apparent gross lesions). Differential expression analysis identified 60 genes found to be significant at an FDR-adjusted p value of 0.05. Of these, 26 were previously demonstrated to exhibit altered expression or genetic polymorphisms related to glucose tolerance or diabetes mellitus in mammals. Additionally, 9 genes have functions directly related to lipid metabolism and 11 genes are associated with adiposity traits such as intramuscular fat and body mass index. This study suggests that wooden breast disease is first and foremost a metabolic disorder characterized primarily by ectopic lipid accumulation in the pectoralis major.


2016 ◽  
Vol 69 (3) ◽  
pp. 485-492 ◽  
Author(s):  
Bungo Shirouchi ◽  
Kentaro Kashima ◽  
Yasutaka Horiuchi ◽  
Yuki Nakamura ◽  
Yumiko Fujimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document