scholarly journals Mathematical Model of Soot Blowing Influences in Dynamic Power Plant Modelling

Author(s):  
Conrad Gierow ◽  
Moritz Hübel ◽  
Jürgen Nocke ◽  
Egon Hassel
Author(s):  
Irina Anatolievna Borovikova

The article touches upon reliability issues of energy management systems (EMS) of marine power plants in emergency situations caused by disturbance of the working media consumption and their subsequent recovery. The mathematical model of processes allows to determine the nature of changes in temperature and pressure of water and lube oil in EMS systems. The requirements to the characteristics of automatic control systems of the marine power plant have been formulated. Basic provisions of the reliability theory are followed by presentation of methods of calculating reliability indices of complex technical systems. The article presents the results of the study of non-stationary modes and reliability indices. Reasonable requirements for automated control systems were obtained through the analysis of working environments and of equipment operating in non-stationary modes, non-exceedance of safety limits of marine power plant operation being taken as the admissibility criterion. Besides, there are possible special modes resulted from emergency situations caused by the power plant equipment failure. Hence, for operation and design of the analyses it is important to study changes of working media in the circulation systems, which resulted from the failure of the pumps. Basic circuit of lubrication and cooling systems of the ship diesel power plants has been approved as recommended by the company "MAN B&W" for slow speed diesel engines standard series MC. Among the recommended schemes there was approved the scheme of the main engine with an autonomous cooling circuit. Schematic diagram of energy systems of a diesel power plant has been made under recommendations of the engine developer. Specifications of the component parts of the ship diesel power plant have been taken as standard for manufactured machinery. A low running L90MC-C four-cylinder main engine manufactured by "MAN B&W" was chosen as a research sample. A mathematical model, as applied to the given problem, consists of 10 algebraic equations for nonsteady working media consumption and 18 differential equations for nonsteady heat transfer in heat exchangers, as well as equations for transport delay in the lubrication systems of internal combustion engines.


Author(s):  
Nupur Goyal ◽  
Mangey Ram ◽  
Akshay Bhardwaj ◽  
Amit Kumar

The present research work proposes a mathematical model of thermal power plant to analyse its performance through reliability measures. Evaluation of reliability measure for thermal power plant is a complex process. The thermal power plant is modelled using Markov process and explored the reliability measures with supplementary variable technique. Also the expected profit to the operation and maintenance of the thermal power plant has been discussed. Failures exist in the thermal power plant affect the performance of the plant, so, to enhance the performance of the plant, authors employs fault coverage technique and demonstrated the effect of fault coverage and component failure on reliability measures graphically by taken some numerical examples for the practical utility.


1982 ◽  
Vol 104 (3) ◽  
pp. 270-274 ◽  
Author(s):  
S. Thompson

A procedure is presented for designing multivariable controllers for unidentified plant. It is assumed that the open-loop plant is stable and its response to step inputs are basically nonoscillatory. For such plant, no mathematical model is required in order to generate multivariable I, PI, or PID controllers. Method of tuning the controllers are also presented and demonstrated, first on a low order linear distillation column model, and finally on a high order, nonlinear, once-through boiler model typical of the type used in nuclear power plant simulation studies.


2014 ◽  
Vol 955-959 ◽  
pp. 3225-3230
Author(s):  
Yu Jie Liu ◽  
Hui Cao ◽  
Qiang An ◽  
De Chang Xie ◽  
Ning Qiu Huang

Given the increasing groundwater exploitation, an attempt is enforced to establish the hydro geological conceptual model of this area. This carries on the numerical simulation of groundwater flow by using the IGW, which is known as the international standard software. The mathematical model established in this paper has reflected the local practical hydro geological conditions and can be used to predict and manage groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document