scholarly journals Lab Diagnosis of Legionnaires’ Disease

JMS SKIMS ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 50-54
Author(s):  
Nayeem U-Din Wani ◽  
Aamir Ali

Legionnaires’ disease is a multi-system disease which causes atypical pneumonia due to Legionella bacteria, most commonly of the species Legionella pneumophila. About one out of every 10 people who get sick from Legionnaires’ disease will die. Most common source of infection-contaminated water supply through inhalation of contaminated water droplets (aerosols). A laboratory diagnosis of Legionnaires’ disease can be made using a variety of laboratory tests including: culture/isolation of the causative organism, antigen detection in urine, a significant rise in antibody titres or PCR methods. Determination of the monoclonal subtype and molecular sequence typing can support linking between strains from the sampled environment and from patients. The control measures available to reduce the amount of Legionella in a water system include structural adaptations to the water system, temperature control, disinfection using chemicals or other oxidizing materials, and use of biocides or installation of filters. JMS 2014;17(2):50-54

1987 ◽  
Vol 98 (3) ◽  
pp. 253-262 ◽  
Author(s):  
C. D. Ribeiro ◽  
S. H. Burge ◽  
S. R. Palmer ◽  
J. O'H. Tobin ◽  
I. D. Watkins

SUMMARYSwabs and water samples from a hospital water system were cultured for legionellae over an extended period. Legionella pneumophila serogroup 1, including outbreak associated strains, were isolated in small numbers from approximately 5% of these samples despite implementation of the current DHSS/Welsh Office regulations. No cases of nosocomial legionnaires' disease were proven during the study. Physical cleaning and chemical sterilization of taps, and replacement of washers with ‘approved’ brands did not eradicate the organisms. Eradication of legionellae in hospital water supplies appears to be unnecessary in preventing nosocomial legionnaires' disease provided the current DHSS/Welsh Office recommendations are implemented.


1990 ◽  
Vol 104 (3) ◽  
pp. 361-380 ◽  
Author(s):  
M. C. O'Mahony ◽  
R. E. Stanwell-Smith ◽  
H. E. Tillett ◽  
D. Harper ◽  
J. G. P. Hutchison ◽  
...  

SUMMARYA large outbreak of Legionnaires’ disease was associated with Stafford District General Hospital. A total of 68 confirmed cases was treated in hospital and 22 of these patients died. A further 35 patients, 14 of whom were treated at home, were suspected cases of Legionnaires’ disease. All these patients had visited the hospital during April 1985. Epidemiological investigations demonstrated that there had been a high risk of acquiring the disease in the out patient department (OPD), but no risk in other parts of the hospital. The epidemic strain ofLegionella pneumophila, serogroup 1, subgroup Pontiac la was isolated from the cooling water system of one of the air conditioning plants. This plant served several departments of the hospital including the OPD. The water in the cooling tower and a chiller unit which cooled the air entering the OPD were contaminated with legionellae. Bacteriological and engineering investigations showed how the chiller unit could have been contaminated and how an aerosol containing legionellae could have been generated in the U–trap below the chiller unit. These results, together with the epidemiological evidence, suggest that the chiller unit was most likely to have been the major source of the outbreak.Nearly one third of hospital staff had legionella antibodies. These staff were likely to have worked in areas of the hospital ventilated by the contaminated air conditioning plant, but not necessarily the OPD. There was evidence that a small proportion of these staff had a mild legionellosis and that these ‘influenza–like’ illnesses had been spread over a 5–month period. A possible explanation of this finding is that small amounts of aerosol from cooling tower sources could have entered the air–intake and been distributed throughout the areas of the hospital served by this ventilation system. Legionellae, subsequently found to be of the epidemic strain, had been found in the cooling tower pond in November 1984 and thus it is possible that staff were exposed to low doses of contaminated aerosol over several months.Control measures are described, but it was later apparent that the outbreak had ended before these interventions were introduced. The investigations revealed faults in the design of the ventilation system.


1987 ◽  
Vol 8 (2) ◽  
pp. 53-58 ◽  
Author(s):  
Jeffrey M. Johnston ◽  
Robert H. Latham ◽  
Frederick A. Meier ◽  
Jon A. Green ◽  
Rebecca Boshard ◽  
...  

AbstractMolecular laboratory techniques were used to study the epidemiology of an outbreak of nosocomial Legionnaires' disease. All patient isolates were Legionella pneumophila serogroup 1 and showed identical plasmid profiles and reactions with serogroup-specific monoclonal antibodies. L pneumophila was also cultured from four of five cooling tower water samples; however, the isolate from only one tower was serogroup 1 of the same sub-type as patient isolates. Since the cases were temporally clustered and epidemiologically associated with exposure to cooling tower aerosols, the single cooling tower implicated by molecular analysis was the most likely source of the outbreak. Chlorination of cooling tower ponds has eradicated the epidemic strain. Since potable water also harbored the infecting organism and was the probable source for cooling tower contamination, decontamination of the hospital water system was also undertaken. Superchlorination of hot water holding tanks to 17 ppm on a weekly basis has effectively eradicated L pneumophila from the potable water system and appears to be a reasonable, simple, and relatively inexpensive alternative to previously described methods of control.


2004 ◽  
Vol 9 (2) ◽  
pp. 10-11 ◽  
Author(s):  
M C Rota ◽  
M G Caporali ◽  
M Massari

In Italy, 35 clusters of travel associated Legionnaires' disease were identified from July 2002, when the European Guidelines for Control and Prevention of Travel Associated Legionnaires' Disease have been adopted by the EWGLINET network, to October 2003. Eight per cent (28.6%) would not have been identified without the network. The clusters detected were small, ranging from 2 cases to a maximum of 6. All clusters involved 5 camping sites and 30 hotels/residences, and an overall of 87 patients. The diagnosis was confirmed in 92.0% of the cases and mainly performed by urinary antigen detection (84.7%). A clinical isolate was available only in one case. Following environmental investigations, samples were collected for all the 35 clusters from the water system, and Legionella pneumophila was found in 23 occasions (65.7%). In 15 resorts out of 35, investigations were already in progress at the time of EWGLI cluster notification, since in Italy full environmental investigation is performed even after notification of a single case. Control measures were implemented in all accommodation sites at risk and one hotel only was closed. In all the 35 clusters, reports were completed and sent on time, highlighting that it is possible to comply with the procedures requested by the European Guidelines.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
J. Rasch ◽  
C. M. Ünal ◽  
A. Klages ◽  
Ü. Karsli ◽  
N. Heinsohn ◽  
...  

ABSTRACTThe gammaproteobacteriumLegionella pneumophilais the causative agent of Legionnaires’ disease, an atypical pneumonia that manifests itself with severe lung damage.L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. InL. pneumophilathe surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness ofL. pneumophila. Furthermore, they contribute to infection of the natural hostAcanthamoeba castellaniias well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators ofL. pneumophilawith compensatory action and pleiotropic effects.


2016 ◽  
Vol 38 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Louise K. Francois Watkins ◽  
Karrie-Ann E. Toews ◽  
Aaron M. Harris ◽  
Sherri Davidson ◽  
Stephanie Ayers-Millsap ◽  
...  

OBJECTIVESTo define the scope of an outbreak of Legionnaires’ disease (LD), to identify the source, and to stop transmission.DESIGN AND SETTINGEpidemiologic investigation of an LD outbreak among patients and a visitor exposed to a newly constructed hematology-oncology unit.METHODSAn LD case was defined as radiographically confirmed pneumonia in a person with positive urinary antigen testing and/or respiratory culture forLegionellaand exposure to the hematology-oncology unit after February 20, 2014. Cases were classified as definitely or probably healthcare-associated based on whether they were exposed to the unit for all or part of the incubation period (2–10 days). We conducted an environmental assessment and collected water samples for culture. Clinical and environmental isolates were compared by monoclonal antibody (MAb) and sequence-based typing.RESULTSOver a 12-week period, 10 cases were identified, including 6 definite and 4 probable cases. Environmental sampling revealedLegionella pneumophilaserogroup 1 (Lp1) in the potable water at 9 of 10 unit sites (90%), including all patient rooms tested. The 3 clinical isolates were identical to environmental isolates from the unit (MAb2-positive, sequence type ST36). No cases occurred with exposure after the implementation of water restrictions followed by point-of-use filters.CONCLUSIONSContamination of the unit’s potable water system with Lp1 strain ST36 was the likely source of this outbreak. Healthcare providers should routinely test patients who develop pneumonia at least 2 days after hospital admission for LD. A single case of LD that is definitely healthcare associated should prompt a full investigation.Infect Control Hosp Epidemiol2017;38:306–313


2018 ◽  
Vol 08 (02) ◽  
pp. 049-052
Author(s):  
Sandeep K. R. ◽  
Sandhya Rani B. S.

AbstractLegionnaires' disease is a form of atypical pneumonia caused by any type of Legionella bacteria. The bacterium is found naturally in fresh water.[4] It can contaminate hot water tanks, hot tubs, and cooling towers of large air conditioners.[4] It is usually spread by breathing in mist that contains the bacteria.[4] It can also occur when contaminated water is aspirated.[4] It typically does not spread directly between people and most people who are exposed do not become infected.[4] Risk factors for infection include older age, history of smoking, chronic lung disease, and poor immune function.[5] There is still a low level of clinical awareness regarding Legionnaires' disease 25 years after it was first detected.


2004 ◽  
Vol 9 (2) ◽  
pp. 12-13 ◽  
Author(s):  
B Decludt ◽  
C Campese ◽  
◽  
◽  
◽  
...  

Clusters of travel associated legionnaires' disease warrant urgent attention, and are detected by the French national surveillance system and the European network EWGLINET. Between September 2001 and August 2003, 37 clusters were identified in French tourist accommodation: 27 hotels and 10 campsites. The number of clinical cases per cluster was as follows: 30 clusters of 2 cases (81%), 6 clusters of 3 cases (16%) and one cluster of 4 cases (3%), a total of 82 cases. The local health authorities performed environmental investigations for 36 of the 37 clusters. Among the 36 clusters investigated, water samples were collected for 35. At 16 (46%) sites, Legionella pneumophila was found at a level of more than 103 cfu/litre. In all of the accommodation where risk assessment was found to be inadequate- control measures were implemented immediately. Six hotels were closed immediately following cluster alerts. Comparison of clinical and environmental isolates by pulsed field gel electrophoresis (PFGE) was possible in 3 clusters and identical genomic profiles of the isolates were found in all. During this two year period of surveillance, we found that on many sites there has been a risk of exposure to Legionella. This reinforces the importance of the European surveillance network and the timely notifications of all the cases to EWGLINET.


2012 ◽  
Vol 17 (41) ◽  
Author(s):  
J Moran-Gilad ◽  
T Lazarovitch ◽  
M Mentasti ◽  
T Harrison ◽  
M Weinberger ◽  
...  

We report a fatal case of community-acquired Legionnaires' disease in an infant aged under six months. Epidemiological and microbiological investigations suggested that a free-standing cold water humidifier using domestic tap water contaminated with Legionella pneumophila serogroup 1 served as a vehicle for infection. These findings were corroborated by sequence-based typing (SBT). Humidifier-associated Legionnaires' disease can be prevented by appropriate control measures. This case also illustrates the emerging role of SBT in the investigation of legionellosis.


1999 ◽  
Vol 37 (7) ◽  
pp. 2189-2196 ◽  
Author(s):  
Paolo Visca ◽  
Paola Goldoni ◽  
P. Christian Lück ◽  
Jürgen H. Helbig ◽  
Lorena Cattani ◽  
...  

Five sporadic cases of nosocomial Legionnaires’ disease were documented from 1989 to 1997 in a hospital in northern Italy. Two of them, which occurred in a 75-year-old man suffering from ischemic cardiopathy and in an 8-year-old girl suffering from acute leukemia, had fatal outcomes. Legionella pneumophila serogroup 6 was isolated from both patients and from hot-water samples taken at different sites in the hospital. These facts led us to consider the possibility that a single clone of L. pneumophila serogroup 6 had persisted in the hospital environment for 8 years and had caused sporadic infections. Comparison of clinical and environmental strains by monoclonal subtyping, macrorestriction analysis (MRA), and arbitrarily primed PCR (AP-PCR) showed that the strains were clustered into three different epidemiological types, of which only two types caused infection. An excellent correspondence between the MRA and AP-PCR results was observed, with both techniques having high discriminatory powers. However, it was not possible to differentiate the isolates by means of ribotyping and analysis of rrnoperon polymorphism. Environmental strains that antigenically and chromosomally matched the infecting organism were present at the time of infection in hot-water samples taken from the ward where the patients had stayed. Interpretation of the temporal sequence of events on the basis of the typing results for clinical and environmental isolates enabled the identification of the ward where the patients became infected and the modes of transmission of Legionellainfection. The long-term persistence in the hot-water system of different clones of L. pneumophila serogroup 6 indicates that repeated heat-based control measures were ineffective in eradicating the organism.


Sign in / Sign up

Export Citation Format

Share Document