scholarly journals Geodesic Approach for an Efficient Trajectory Planning of Mobile Robot Manipulators

Author(s):  
Pradip Kumar Sahu ◽  
Bibhuti Bhusan Biswal

In this paper, the geodesic approach has been employed for an effective, optimal, accurate and smooth trajectory planning of a mobile robot manipulator mechanism. Generally, geodesic can be described as the shortest curvature between two loci on a Riemannian manifold. In order to attain the planned end-effector motion, Riemannian metrics has been consigned to the forward kinematics of mobile robot wheel as well as the mobile robot manipulator workspace. The rotational angles of wheel and joint kinematic parameters are chosen as local coordinates of spaces to represent Cartesian trajectories for mobile wheel rotation trajectories and joint trajectories respectively. The geodesic equalities for a given set of boundary conditions are evaluated for the chosen Riemannian metrics and the computational results of the geodesic equations have been shown. So as to verify and validate the efficiency of the chosen geodesic scheme, the method has been implemented for the motion planning and optimization of a mobile robot with a simple 3R manipulator installed upon its platform.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas Baron ◽  
Andrew Philippides ◽  
Nicolas Rojas

This paper presents a novel kinematically redundant planar parallel robot manipulator, which has full rotatability. The proposed robot manipulator has an architecture that corresponds to a fundamental truss, meaning that it does not contain internal rigid structures when the actuators are locked. This also implies that its rigidity is not inherited from more general architectures or resulting from the combination of other fundamental structures. The introduced topology is a departure from the standard 3-RPR (or 3-RRR) mechanism on which most kinematically redundant planar parallel robot manipulators are based. The robot manipulator consists of a moving platform that is connected to the base via two RRR legs and connected to a ternary link, which is joined to the base by a passive revolute joint, via two other RRR legs. The resulting robot mechanism is kinematically redundant, being able to avoid the production of singularities and having unlimited rotational capability. The inverse and forward kinematics analyses of this novel robot manipulator are derived using distance-based techniques, and the singularity analysis is performed using a geometric method based on the properties of instantaneous centers of rotation. An example robot mechanism is analyzed numerically and physically tested; and a test trajectory where the end effector completes a full cycle rotation is reported. A link to an online video recording of such a capability, along with the avoidance of singularities and a potential application, is also provided.


Author(s):  
Pradip Kumar Sahu

<p>This paper intends to propose an optimal trajectory planning technique using geodesic to achieve smooth and accurate trajectory for industrial robots. Geodesic is a distance minimizing curve between any two points on a Riemannian manifold. A Riemannian metric has been assigned to the workspace by combining its position and orientation space together in order to attain geodesic conditions for desired motion of the end-effector. Previously, trajectory has been planned by considering position and orientation separately. However, practically we cannot plan separately because the manipulator joints are interlinked. Here, trajectory is planned by combining position and orientation together. Cartesian trajectories are shown by joint trajectories in which joint variables are treated as local coordinates of position space and orientation space. Then, the obtained geodesic equations for the workspace are evaluated for initial conditions of trajectory and results are plotted. The effectiveness of the geodesic method validated through numerical computations considering a Kawasaki RS06L robot model. The simulation results confirm the accuracy, smoothness and the optimality of the end-effector motion. </p>


2021 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Indra Agustian ◽  
Novalio Daratha ◽  
Ruvita Faurina ◽  
Agus Suandi ◽  
Sulistyaningsih Sulistyaningsih

This paper presents the development of vision-based robotic arm manipulator control by applying Proportional Derivative-Pseudoinverse Jacobian (PD-PIJ) kinematics and Denavit Hartenberg forward kinematics. The task of sorting objects based on color is carried out to observe error propagation in the implementation of manipulator on real system. The objects image captured by the digital camera were processed based on HSV-color model and the centroid coordinate of each object detected were calculated. These coordinates are end effector position target to pick each object and were placed to the right position based on its color. Based on the end effector position target, PD-PIJ inverse kinematics method was used to determine the right angle of each joint of manipulator links. The angles found by PD-PIJ is the input of DH forward kinematics. The process was repeated until the square end effector reached the target. The experiment of model and implementation to actual manipulator were analyzed using Probability Density Function (PDF) and Weibull Probability Distribution. The result shows that the manipulator navigation system had a good performance. The real implementation of color sorting task on manipulator shows the probability of success rate cm is 94.46% for euclidian distance error less than 1.2 cm.


Author(s):  
Jonathan Tapia ◽  
Eric Wineman ◽  
Patrick Benavidez ◽  
Aldo Jaimes ◽  
Ethan Cobb ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1594 ◽  
Author(s):  
Andrea Botta ◽  
Paride Cavallone ◽  
Luigi Tagliavini ◽  
Luca Carbonari ◽  
Carmen Visconte ◽  
...  

In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip.


2021 ◽  
Vol 1802 (2) ◽  
pp. 022067
Author(s):  
Xing Zhang ◽  
Hao Kou ◽  
Yi Zhang ◽  
Kaina Jan ◽  
Boris Ivanovic

2016 ◽  
Vol 2016 ◽  
pp. 1-28 ◽  
Author(s):  
Wanjin Guo ◽  
Ruifeng Li ◽  
Chuqing Cao ◽  
Xunwei Tong ◽  
Yunfeng Gao

A new methodology using a direct method for obtaining the best found trajectory planning and maximum dynamic load-carrying capacity (DLCC) is presented for a 5-degree of freedom (DOF) hybrid robot manipulator. A nonlinear constrained multiobjective optimization problem is formulated with four objective functions, namely, travel time, total energy involved in the motion, joint jerks, and joint acceleration. The vector of decision variables is defined by the sequence of the time-interval lengths associated with each two consecutive via-points on the desired trajectory of the 5-DOF robot generalized coordinates. Then this vector of decision variables is computed in order to minimize the cost function (which is the weighted sum of these four objective functions) subject to constraints on joint positions, velocities, acceleration, jerks, forces/torques, and payload mass. Two separate approaches are proposed to deal with the trajectory planning problem and the maximum DLCC calculation for the 5-DOF robot manipulator using an evolutionary optimization technique. The adopted evolutionary algorithm is the elitist nondominated sorting genetic algorithm (NSGA-II). A numerical application is performed for obtaining best found solutions of trajectory planning and maximum DLCC calculation for the 5-DOF hybrid robot manipulator.


Sign in / Sign up

Export Citation Format

Share Document