scholarly journals A Novel Kinematically Redundant Planar Parallel Robot Manipulator With Full Rotatability

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas Baron ◽  
Andrew Philippides ◽  
Nicolas Rojas

This paper presents a novel kinematically redundant planar parallel robot manipulator, which has full rotatability. The proposed robot manipulator has an architecture that corresponds to a fundamental truss, meaning that it does not contain internal rigid structures when the actuators are locked. This also implies that its rigidity is not inherited from more general architectures or resulting from the combination of other fundamental structures. The introduced topology is a departure from the standard 3-RPR (or 3-RRR) mechanism on which most kinematically redundant planar parallel robot manipulators are based. The robot manipulator consists of a moving platform that is connected to the base via two RRR legs and connected to a ternary link, which is joined to the base by a passive revolute joint, via two other RRR legs. The resulting robot mechanism is kinematically redundant, being able to avoid the production of singularities and having unlimited rotational capability. The inverse and forward kinematics analyses of this novel robot manipulator are derived using distance-based techniques, and the singularity analysis is performed using a geometric method based on the properties of instantaneous centers of rotation. An example robot mechanism is analyzed numerically and physically tested; and a test trajectory where the end effector completes a full cycle rotation is reported. A link to an online video recording of such a capability, along with the avoidance of singularities and a potential application, is also provided.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shangyuan Zou ◽  
Hairui Liu ◽  
Yanli Liu ◽  
Jiafeng Yao ◽  
Hongtao Wu

Singularity research is carried out. The problem, which is about six-dimensional parameters of position and orientation can not realize three-dimensional visualization for 6DOF parallel robot, has been solved. Firstly, according to the structural characteristics of the 6DOF parallel robot with the planar platform, the position and orientation of the mobile platform are described, respectively, and the six equations of forward kinematics are established by choosing the natural coordinates of three representative points as parameters. Then, the singularities of the 6DOF parallel robot with a planar platform are divided into input singularity and output singularity. Aiming at the output singularity, in combination with six constraint equations among the position vectors of three representative points, an analytical algorithm is proposed to express the coupling singularity of position and orientation and the analytical expression is derived. In further research, three kinds of output singularities are found, the spatial distribution of the output singular trajectory is determined, and a unified three-dimensional fully visualized description of six-dimensional coupling variables is realized for the first time. The problems of finding the singular orientation at a given position or the singular position at a given orientation are solved. The analysis of the singularity lays a solid foundation for the description of the three-dimensional complete visualization of a six-dimensional singularity-free workspace based on forward kinematics. What is more, it has great significance for both trajectory planning and control design of the parallel robot.


Robotica ◽  
2018 ◽  
Vol 37 (4) ◽  
pp. 599-625 ◽  
Author(s):  
M. Kemal Ozgoren

SummaryThis paper provides a contribution to the singularity analysis of the parallel manipulators by introducing the position singularities in addition to the motion and actuation singularities. The motion singularities are associated with the linear velocity mapping between the task and joint spaces. So, they are the singularities of the relevant Jacobian matrices. On the other hand, the position singularities are associated with the nonlinear position mapping between the task and joint spaces. So, they are encountered in the position-level solutions of the forward and inverse kinematics problems. In other words, they come out irrespective of the velocity mapping and the Jacobian matrices. Considering these distinctions, a kinematic singularity is denoted here by one of the four acronyms, which are PSFK (position singularity of forward kinematics), PSIK (position singularity of inverse kinematics), MSFK (motion singularity of forward kinematics), and MSIK (motion singularity of inverse kinematics). There may also occur an actuation singularity (ACTS) concerning the kinetostatic relationships that involve forces and moments. However, it is verified that an ACTS is the same as an MSFK. Each singularity induces different consequences in the joint and task spaces. A PSFK imposes a constraint on the active joint variables and makes the end-effector position indefinite and uncontrollable. Therefore, it must be avoided. An MSFK imposes a constraint on the rates of the active joint variables and makes the end-effector motion indefinite and easily perturbable. Besides, since it is also an ACTS, it causes the actuator torques or forces to grow without bound. Therefore, it must also be avoided. On the other hand, a PSIK imposes a constraint on the end-effector position but provides freedom for the active joint variables. Similarly, an MSIK imposes a constraint on the end-effector motion but provides freedom for the rates of the active joint variables. A PSIK or MSIK need not be avoided if the constraint it imposes on the position or motion of the end-effector is acceptable or if the task can be planned to be compatible with that constraint. Besides, with such a compatible task, a PSIK or MSIK may even be advantageous, because the freedom it provides for the active joint variables can sometimes be used for a secondary purpose. This paper is also concerned with the multiplicities of forward kinematics in the assembly modes of the manipulator and the multiplicities of inverse kinematics in the posture modes of the legs. It is shown that the assembly mode changing poses of the manipulator are the same as the MSFK poses, and the posture mode changing poses of the legs are the same as the MSIK poses.


2009 ◽  
Vol 16-19 ◽  
pp. 1294-1298 ◽  
Author(s):  
Ji Man Luo ◽  
Li Na Cong ◽  
Tian Fang

Kinematics simulation and characteristics of a new type of parallel robot manipulator (PRM) with two-dimension movement and one-dimension rotation are analyzed. The new PRM is proved to can realize expected movement, and have smooth movement curves of displacement and velocity. The moving platform center of the PRM can achieve a wide range of swing, and has a larger working space. According to the kinematics theory, the working space and singularity characteristic are analyzed. Simulation and analysis indicated that the working space of the new PRM in the form and position is not singular, and has good maneuverability, thus providing the foundation for practice application and product exploitation.


Author(s):  
Yong-Lin Kuo ◽  
Shih-Chien Tang

This paper presents a modified resolved acceleration control scheme based on deep regression of the convolutional neural network. The resolved acceleration control scheme can achieve precise motion control of robot manipulators by regulating the accelerations of the end-effector, and the conventional scheme needs the position and orientation of the end-effector, which are obtained through the direct kinematics of the robot manipulator. This scheme increases the computational loads and might obtain inaccurate position and orientation due to mechanical errors. To overcome the drawbacks, a camera is used to capture the images of the robot manipulator, and then a deep regression of convolutional neural network is imposed into the resolved acceleration control to obtain the position and orientation of the end-effector. The proposed approach aims to enhance the positioning accuracy, to reduce the computational loads, and to facilitate the deep regression in real-time control. In this study, the proposed approach is applied to a 3-DOF planar parallel robot manipulator, and the results are compared with those by the conventional resolved acceleration control and a visual servo-based control. The results show that those objectives are achieved. Furthermore, the robustness of the proposed approach is tested through only the partial image of the end-effector available, and the proposed approach still works functionally and effectively.


Author(s):  
Pradip Kumar Sahu ◽  
Bibhuti Bhusan Biswal

In this paper, the geodesic approach has been employed for an effective, optimal, accurate and smooth trajectory planning of a mobile robot manipulator mechanism. Generally, geodesic can be described as the shortest curvature between two loci on a Riemannian manifold. In order to attain the planned end-effector motion, Riemannian metrics has been consigned to the forward kinematics of mobile robot wheel as well as the mobile robot manipulator workspace. The rotational angles of wheel and joint kinematic parameters are chosen as local coordinates of spaces to represent Cartesian trajectories for mobile wheel rotation trajectories and joint trajectories respectively. The geodesic equalities for a given set of boundary conditions are evaluated for the chosen Riemannian metrics and the computational results of the geodesic equations have been shown. So as to verify and validate the efficiency of the chosen geodesic scheme, the method has been implemented for the motion planning and optimization of a mobile robot with a simple 3R manipulator installed upon its platform.


2021 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Indra Agustian ◽  
Novalio Daratha ◽  
Ruvita Faurina ◽  
Agus Suandi ◽  
Sulistyaningsih Sulistyaningsih

This paper presents the development of vision-based robotic arm manipulator control by applying Proportional Derivative-Pseudoinverse Jacobian (PD-PIJ) kinematics and Denavit Hartenberg forward kinematics. The task of sorting objects based on color is carried out to observe error propagation in the implementation of manipulator on real system. The objects image captured by the digital camera were processed based on HSV-color model and the centroid coordinate of each object detected were calculated. These coordinates are end effector position target to pick each object and were placed to the right position based on its color. Based on the end effector position target, PD-PIJ inverse kinematics method was used to determine the right angle of each joint of manipulator links. The angles found by PD-PIJ is the input of DH forward kinematics. The process was repeated until the square end effector reached the target. The experiment of model and implementation to actual manipulator were analyzed using Probability Density Function (PDF) and Weibull Probability Distribution. The result shows that the manipulator navigation system had a good performance. The real implementation of color sorting task on manipulator shows the probability of success rate cm is 94.46% for euclidian distance error less than 1.2 cm.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


Sign in / Sign up

Export Citation Format

Share Document