foot trajectory
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 32)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012172
Author(s):  
M J Koushik ◽  
M S Aravind Krishna ◽  
R Rahul ◽  
Pramod Sreedharan

Abstract When it comes to walking robots, foot trajectory is a crucial element that can significantly influence the efficiency of the walking robot. This paper analyses the various foot return trajectories, which can provide higher step length while consuming less power. It is done through mathematical analysis and verified using simulations in software such as MSC Adams and Solidworks. This paper also discusses the kinematic and dynamic analysis of the two degrees of freedom leg using theoretical approaches in MATLAB and verifies the results using the simulation in MSC Adams.


2021 ◽  
Vol 18 (6) ◽  
pp. 172988142110620
Author(s):  
Yaru Sun ◽  
Zisen Hua ◽  
Yibin Li ◽  
Chai Hui ◽  
Xianhua Li ◽  
...  

According to the energy consumption characteristics of hydraulic actuator, the valuable foot trajectory characterized by using segmented cubic spline interpolation curve in the swing phase is proposed firstly to reduce the energy consumption of quadruped robots, which is implemented by using controlling parameters tf to change the duration of leg raising and falling in one gait cycle, and then realized the directly control to the time ratio between the piston extension and retraction. Then, the total energy consumption of the hydraulic actuated quadruped robot SCalf-II is modeled. Meanwhile, the parameters of the foot trajectory that have a large impact on the energy consumption are determined. Finally, simulation analysis and verification experiments of the robot moving with constant speeds at the key parameters are performed. The results show that for the given foot trajectory, the optimization ranges of the gait cycle and duration of leg lifting from the lowest to highest are determined in which the energy required for the robot locomotion is at a relatively low level.


2021 ◽  
Vol 11 (19) ◽  
pp. 9217
Author(s):  
Haichuang Xia ◽  
Xiaoping Zhang ◽  
Hong Zhang

Compared with wheeled and tracked robots, legged robots have better movement ability and are more suitable for the exploration of unknown environments. In order to further improve the adaptability of legged robots to complex terrains such as slopes, obstacle environments, and so on, this paper makes a new design of the legged robot’s foot sensing structure that can successfully provide accurate feedback of the landing information. Based on this information, a new foot trajectory planning method named three-element trajectory determination method is proposed. For each leg in one movement period, the three elements are the start point in the support phase, the end point in the support phase, and the joint angle changes in the transfer phase where the first two elements are used to control the height, distance, and direction of the movement, and the third element is used make decisions during the lifting process of the leg. For the support phase, the trajectory is described in Cartesian space, and a spline of linear function with parabolic blends is used. For the transfer phase, the trajectory is described in joint-space, and the joint angle function is designed as the superposition of the joint angle reverse-chronological function and the interpolation function which is obtained based on joint angle changes. As an important legged robot, a hexapod robot that we designed by ourselves with triangle gait is chosen to test the proposed foot trajectory planning method. Experiments show that, while the foot’s landing information can be read and based on the three-element trajectory planning method, the hexapod robot can achieve stable movement even in very complex scenes. Although the experiments are performed on a hexapod robot, our method is applicable to all forms of legged robots.


2021 ◽  
Author(s):  
Huanzhong Chen ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Chencheng Dong ◽  
Qingqing Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shun Yamashita ◽  
Kotaro Igarashi ◽  
Naomichi Ogihara

AbstractVariabilities or fluctuations in foot clearance are considered as a risk factor for falls during walking in older adults. The present study aimed to investigate whether the foot trajectory variability can be reduced by applying vibratory stimulation to the foot's plantar surface during walking. Ten healthy adults were asked to walk on a treadmill with vibratory shoes, and body kinematics were measured. Changes in the mean absolute deviations of the foot trajectory and joint and trunk angles were compared between the periods of applied or absent vibratory stimulus. Our results demonstrated that toe trajectory variability in the swing phase was significantly smaller when a vibratory stimulus was applied. Applying vibratory stimulus to the soles of the forefoot could potentially be used to reduce foot trajectory variability, which could reduce the risk of trips and associated falls during walking in older adults.


Author(s):  
Jiu-Peng Chen ◽  
Hong-Jun San ◽  
Xing Wu ◽  
Bin-Zhou Xiong

Quadruped bionic robot has a strong adaptability to the environment, compared with wheeled and tracked robots, it has superior motion performance, and has a wide range of application prospects in rescue and disaster relief, ground mine clearance, mountain transportation, so it has become a research hotspot all over the world. Leg structure is an important embodiment of the superior performance of quadruped robot, and it is also the key and difficult point of design. This article proposes a novel quadruped robot with waist structure, which can complete a variety of gait forms. Based on the theory of linkage mechanism, a novel leg structure is designed with anti-parallelogram mechanism, which improves the strength and stiffness of the robot. Using D-H description method, the kinematics analysis of this quadruped robot single leg is carried out. On this basis, in order to ensure the foot contact with the ground and achieve zero impact, polynomial programming is used to plan the foot trajectory of swing phase and support phase. Based on the static stability margin, the optimal static gait of the quadruped robot is planned. A co-simulation study has been carried out to investigate further the validity and effectiveness of the quadruped robot on gait. The simulation results clearly show the robot can walk steadily and its input and output meet the expected requirements. The solid prototype platform is built, and the trajectory planning experiment of single leg is carried out, and the foot trajectory of single leg is obtained by using laser tracker. The gait planning algorithm is applied to the whole robot, and the results show that the robot can walk according to the scheduled gait, which proves the effectiveness of the proposed algorithm.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Mingfang Chen ◽  
Qi Li ◽  
Sen Wang ◽  
Kaixiang Zhang ◽  
Hao Chen ◽  
...  

To meet the stability requirements for moving quadruped robots, it is important to design a rational structure for a single leg and plan the trajectory of the foot. First, a novel electrically driven leg mechanism for a quadruped robot is designed in this paper to reduce the inertia of the leg swing. Second, a modified foot trajectory based on a compound cycloid is proposed, which has swing-back and retraction motion and continuous velocity in the x-axis direction. Third, a Simulink platform is built to verify the correctness of the proposed foot trajectory. The simulation result shows that when the flight phase and the stand phase switch, the impact of torque is smaller than the foot trajectory before modification. Finally, an experimental platform is constructed, and a control algorithm is written into the controller to realize the foot proposed trajectory. The results of the experiment prove the feasibility of the leg mechanism and the rationality of the proposed foot trajectory.


2021 ◽  
pp. 825-835
Author(s):  
Shuyuan Shi ◽  
Shengchang Fang ◽  
Xuan Wu ◽  
Xiaojie Wang

Sign in / Sign up

Export Citation Format

Share Document