scholarly journals Multifunctional mesoporous organosilica nanoparticles with high surface area for antibacterial applications

Author(s):  
Klinkenberg Nele ◽  
Gehring Julia ◽  
Bronner Hannah ◽  
Polarz Sebastian
2021 ◽  
Author(s):  
Ehsan Valiey ◽  
Mohammad G. Dekamin

In this work, novel pyromellitic diamide-diacid bridged mesoporous organosilica (PMAMOS) nanospheres with controllable morphologies and active catalytic centers were designed and prepared with high surface area and uniform pore size...


2020 ◽  
Author(s):  
Dennis Kollofrath ◽  
Marcel Geppert ◽  
Sebastian Polarz

The development of drugs for birth-control has changed society, and they are used by billions of woman on an every day basis. As for every mass product, there are problems associated with the waste it causes. One has found that residues of hormones in the urine of woman cannot be removed sufficiently from waste-water and this, in-turn, has already observable and undesired consequences in the biosphere. Apart from the removal of drugs, one is in general seeking new methods for the removal of hydrophobic impurities from waste-water. An ideal system would quantitatively take up the impurity, entrap it followed by preferably simple separation. Finally, one wants to reuse the absorbent, which implies the possibility for regeneration and recycling. Such as complex set of tasks requires a relatively complex materials architecture. Functional organic polymers with high affinity towards the drug, with stable open porosity and high surface area, stimuli-responsive properties and in the form of colloidal dispersions could do the job. Unfortunately, such a system does not exist. We solved this problem by generating mesoporous organosilica nanoparticles, which are monomers at the same time. Initiation of the polymerization reaction by surface-bound pore-walls leads to the formation of a special type of block-copolymer. The pore-walls are covered by the polymer, which cannot leach. An orthogonal modification was achieved by modification of the external surfaces of the particles with a thermoresponsive polymer by click-chemistry. The final core-shell system was able to remove hydrophobic molecules such as the hormone progesterone from water. A change of temperature induces the collapse of the thermoresponsive polymer, which closes the pores and induces aggregation of the particles. After separation of the particles, and thus also the entrapped impurity, from the solvent, one can re-open the pores, which leads to a release of the adsorbed compound(s).


2020 ◽  
Author(s):  
Dennis Kollofrath ◽  
Marcel Geppert ◽  
Sebastian Polarz

The development of drugs for birth-control has changed society, and they are used by billions of woman on an every day basis. As for every mass product, there are problems associated with the waste it causes. One has found that residues of hormones in the urine of woman cannot be removed sufficiently from waste-water and this, in-turn, has already observable and undesired consequences in the biosphere. Apart from the removal of drugs, one is in general seeking new methods for the removal of hydrophobic impurities from waste-water. An ideal system would quantitatively take up the impurity, entrap it followed by preferably simple separation. Finally, one wants to reuse the absorbent, which implies the possibility for regeneration and recycling. Such as complex set of tasks requires a relatively complex materials architecture. Functional organic polymers with high affinity towards the drug, with stable open porosity and high surface area, stimuli-responsive properties and in the form of colloidal dispersions could do the job. Unfortunately, such a system does not exist. We solved this problem by generating mesoporous organosilica nanoparticles, which are monomers at the same time. Initiation of the polymerization reaction by surface-bound pore-walls leads to the formation of a special type of block-copolymer. The pore-walls are covered by the polymer, which cannot leach. An orthogonal modification was achieved by modification of the external surfaces of the particles with a thermoresponsive polymer by click-chemistry. The final core-shell system was able to remove hydrophobic molecules such as the hormone progesterone from water. A change of temperature induces the collapse of the thermoresponsive polymer, which closes the pores and induces aggregation of the particles. After separation of the particles, and thus also the entrapped impurity, from the solvent, one can re-open the pores, which leads to a release of the adsorbed compound(s).


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Author(s):  
Sisir Maity ◽  
Dheeraj Kumar Singh ◽  
Divya Bhutani ◽  
Suchitra Prasad ◽  
Umesh V. Waghmare ◽  
...  

MethodsX ◽  
2021 ◽  
pp. 101464
Author(s):  
Yichen Wu ◽  
Nan Zhang ◽  
Charles-François de Lannoy

2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1962
Author(s):  
Mahboubeh Nabavinia ◽  
Baishali Kanjilal ◽  
Noahiro Fujinuma ◽  
Amos Mugweru ◽  
Iman Noshadi

To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.


Sign in / Sign up

Export Citation Format

Share Document