scholarly journals Towards large-scale, high resolution maps of object selectivity in inferior temporal cortex

Author(s):  
DiCarlo James
2019 ◽  
Author(s):  
Kamila M. Jozwik ◽  
Michael Lee ◽  
Tiago Marques ◽  
Martin Schrimpf ◽  
Pouya Bashivan

Image features computed by specific convolutional artificial neural networks (ANNs) can be used to make state-of-the-art predictions of primate ventral stream responses to visual stimuli.However, in addition to selecting the specific ANN and layer that is used, the modeler makes other choices in preprocessing the stimulus image and generating brain predictions from ANN features. The effect of these choices on brain predictivity is currently underexplored.Here, we directly evaluated many of these choices by performing a grid search over network architectures, layers, image preprocessing strategies, feature pooling mechanisms, and the use of dimensionality reduction. Our goal was to identify model configurations that produce responses to visual stimuli that are most similar to the human neural representations, as measured by human fMRI and MEG responses. In total, we evaluated more than 140,338 model configurations. We found that specific configurations of CORnet-S best predicted fMRI responses in early visual cortex, and CORnet-R and SqueezeNet models best predicted fMRI responses in inferior temporal cortex. We found specific configurations of VGG-16 and CORnet-S models that best predicted the MEG responses.We also observed that downsizing input images to ~50-75% of the input tensor size lead to better performing models compared to no downsizing (the default choice in most brain models for vision). Taken together, we present evidence that brain predictivity is sensitive not only to which ANN architecture and layer is used, but choices in image preprocessing and feature postprocessing, and these choices should be further explored.


2015 ◽  
Vol 113 (3) ◽  
pp. 740-753 ◽  
Author(s):  
Markus Plank ◽  
Joseph Snider ◽  
Erik Kaestner ◽  
Eric Halgren ◽  
Howard Poizner

Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans.


Author(s):  
Rodrigo M. Braga ◽  
Lauren M. DiNicola ◽  
Randy L. Buckner

Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, datasets, acquisition tasks, and analytic methods. In addition to classical language regions near to perisylvian cortex and temporal pole, additional regions were observed in dorsal posterior cingulate, midcingulate, anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrast to non-word) sentences, while spatially adjacent networks showed minimal or even decreased activity. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally-related sensorimotor regions might anchor specialization of neighboring association regions that develop into the language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex.


Sign in / Sign up

Export Citation Format

Share Document