scholarly journals Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

Author(s):  
Miquelajauregui Amaya ◽  
Kribakaran Sahana ◽  
Mostany Ricardo ◽  
Badaloni Aurora ◽  
Consalez Giacomo ◽  
...  
2018 ◽  
Author(s):  
Sabrina Tazerart ◽  
Diana E. Mitchell ◽  
Soledad Miranda-Rottmann ◽  
Roberto Araya

SUMMARYSpike-timing-dependent plasticity (STDP) has been extensively studied in cortical pyramidal neurons, however, the precise structural organization of excitatory inputs that supports STDP, as well as the structural, molecular and functional properties of dendritic spines during STDP remain unknown. Here we performed a spine STDP protocol using two-photon glutamate uncaging to mimic presynaptic glutamate release (pre) paired with somatically generated postsynaptic spikes (post). We found that the induction of STDP in single spines follows a classical Hebbian STDP rule, where pre-post pairings at timings that trigger LTP (t-LTP) produce shrinkage of the activated spine neck and a concomitant increase in its synaptic strength; and post-pre pairings that trigger LTD (t-LTD) decrease synaptic strength without affecting the activated spine shape. Furthermore, we tested whether the single spine-Hebbian STDP rule could be affected by the activation of neighboring (clustered) or distant (distributed) spines. Our results show that the induction of t-LTP in two clustered spines (<5 μm apart) enhances LTP through a mechanism dependent on local spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was disrupted by the activation of two clustered spines but recovered when spines were separated by >40 μm. These results indicate that synaptic cooperativity, induced by the co-activation of only two clustered spines, provides local dendritic depolarization and local calcium signals sufficient to disrupt t-LTD and extend the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.


2015 ◽  
Vol 76 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Lei Ma ◽  
Qian Qiao ◽  
Jin-Wu Tsai ◽  
Guang Yang ◽  
Wei Li ◽  
...  

PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001375
Author(s):  
Olivier Gemin ◽  
Pablo Serna ◽  
Joseph Zamith ◽  
Nora Assendorp ◽  
Matteo Fossati ◽  
...  

Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light–electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.


2021 ◽  
pp. 1-17
Author(s):  
Tzu-Yin Yeh ◽  
Pei-Hsin Liu

Background: In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. Objective: The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. Methods: Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi— Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. Results: The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. Conclusions: Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2007 ◽  
Vol 18 (2) ◽  
pp. 397-406 ◽  
Author(s):  
A. Frick ◽  
D. Feldmeyer ◽  
M. Helmstaedter ◽  
B. Sakmann

2020 ◽  
Vol 5 ◽  
pp. 68
Author(s):  
Emma Craig ◽  
Christopher M. Dillingham ◽  
Michal M. Milczarek ◽  
Heather M. Phillips ◽  
Moira Davies ◽  
...  

Background: Neuronal plasticity is thought to underlie learning and memory formation. The density of dendritic spines in the CA1 region of the hippocampus has been repeatedly linked to mnemonic processes. Both the number and spatial location of the spines, in terms of proximity to nearest neighbour, have been implicated in memory formation. To examine how spatial training impacts synaptic structure in the hippocampus, Lister-Hooded rats were trained on a hippocampal-dependent spatial task in the radial-arm maze.  Methods: One group of rats were trained on a hippocampal-dependent spatial task in the radial arm maze. Two further control groups were included: a yoked group which received the same sensorimotor stimulation in the radial-maze but without a memory load, and home-cage controls. At the end of behavioural training, the brains underwent Golgi staining. Spines on CA1 pyramidal neuron dendrites were imaged and quantitatively assessed to provide measures of density and distance from nearest neighbour.  Results: There was no difference across behavioural groups either in terms of spine density or in the clustering of dendritic spines. Conclusions: Spatial learning is not always accompanied by changes in either the density or clustering of dendritic spines on the basal arbour of CA1 pyramidal neurons when assessed using Golgi imaging.


2016 ◽  
Author(s):  
Tharkika Nagendran ◽  
Rylan S. Larsen ◽  
Rebecca L. Bigler ◽  
Shawn B. Frost ◽  
Benjamin D. Philpot ◽  
...  

AbstractInjury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.


Sign in / Sign up

Export Citation Format

Share Document