Removal of a compressive mass causes a transient disruption of blood-brain barrier but a long-term recovery of spiny stellate neurons in the rat somatosensory cortex

2021 ◽  
pp. 1-17
Author(s):  
Tzu-Yin Yeh ◽  
Pei-Hsin Liu

Background: In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. Objective: The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. Methods: Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi— Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. Results: The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. Conclusions: Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.

2010 ◽  
Vol 30 (6) ◽  
pp. 1121-1136 ◽  
Author(s):  
Jia-Li Lin ◽  
Yung-Hsin Huang ◽  
Yi-Ching Shen ◽  
Hsuan-Chi Huang ◽  
Pei-Hsin Liu

Transient compression of rat somatosensory cortex has been reported to affect cerebral microvasculature and sensory function simultaneously. However, the effects of long-term cortical compression remain unknown. Here, we investigated whether and to what extent sustained but moderate epidural compression of rat somatosensory cortex impairs somatic sensation and/or cortical microvasculature. Electrophysiological and behavioral tests revealed that sustained compression caused only short-term sensory deficit, particularly at 1 day after injury. Although the diameter of cortical microvessels was coincidentally reduced, no ischemic insult was observed. By measuring Evans Blue and immunoglobulin G extravasation, the blood–brain barrier (BBB) permeability was found to dramatically increase during 1 to 3 days, but this did not lead to brain edema. Furthermore, immunoblotting showed that the BBB component proteins occludin, claudin-5, type IV collagen, and glial fibrillary acidic protein were markedly upregulated in the injured cortex during 1 to 2 weeks when BBB regained integrity. Conversely, treatment of ascorbic acid prevented compression-induced BBB disruption and sensory impairment. Together, these data suggest that sustained compression of the somatosensory cortex compromises BBB integrity and somatic sensation only in the early period. Ascorbic acid may be used therapeutically to modulate cortical compression and/or BBB dysfunction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


2019 ◽  
Vol 11 ◽  
pp. 117957351984065 ◽  
Author(s):  
Divine C Nwafor ◽  
Allison L Brichacek ◽  
Afroz S Mohammad ◽  
Jessica Griffith ◽  
Brandon P Lucke-Wold ◽  
...  

Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB’s role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.


Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Cina Sasannejad ◽  
E. Wesley Ely ◽  
Shouri Lahiri

Abstract Acute respiratory distress syndrome (ARDS) survivors experience a high prevalence of cognitive impairment with concomitantly impaired functional status and quality of life, often persisting months after hospital discharge. In this review, we explore the pathophysiological mechanisms underlying cognitive impairment following ARDS, the interrelations between mechanisms and risk factors, and interventions that may mitigate the risk of cognitive impairment. Risk factors for cognitive decline following ARDS include pre-existing cognitive impairment, neurological injury, delirium, mechanical ventilation, prolonged exposure to sedating medications, sepsis, systemic inflammation, and environmental factors in the intensive care unit, which can co-occur synergistically in various combinations. Detection and characterization of pre-existing cognitive impairment imparts challenges in clinical management and longitudinal outcome study enrollment. Patients with brain injury who experience ARDS constitute a distinct population with a particular combination of risk factors and pathophysiological mechanisms: considerations raised by brain injury include neurogenic pulmonary edema, differences in sympathetic activation and cholinergic transmission, effects of positive end-expiratory pressure on cerebral microcirculation and intracranial pressure, and sensitivity to vasopressor use and volume status. The blood-brain barrier represents a physiological interface at which multiple mechanisms of cognitive impairment interact, as acute blood-brain barrier weakening from mechanical ventilation and systemic inflammation can compound existing chronic blood-brain barrier dysfunction from Alzheimer’s-type pathophysiology, rendering the brain vulnerable to both amyloid-beta accumulation and cytokine-mediated hippocampal damage. Although some contributory elements, such as the presenting brain injury or pre-existing cognitive impairment, may be irreversible, interventions such as minimizing mechanical ventilation tidal volume, minimizing duration of exposure to sedating medications, maintaining hemodynamic stability, optimizing fluid balance, and implementing bundles to enhance patient care help dramatically to reduce duration of delirium and may help prevent acquisition of long-term cognitive impairment.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Billel Benmimoun ◽  
Florentia Papastefanaki ◽  
Bruno Périchon ◽  
Katerina Segklia ◽  
Nicolas Roby ◽  
...  

AbstractPathogens able to cross the blood-brain barrier (BBB) induce long-term neurological sequelae and death. Understanding how neurotropic pathogens bypass this strong physiological barrier is a prerequisite to devise therapeutic strategies. Here we propose an innovative model of infection in the developing Drosophila brain, combining whole brain explants with in vivo systemic infection. We find that several mammalian pathogens are able to cross the Drosophila BBB, including Group B Streptococcus (GBS). Amongst GBS surface components, lipoproteins, and in particular the B leucine-rich Blr, are important for BBB crossing and virulence in Drosophila. Further, we identify (V)LDL receptor LpR2, expressed in the BBB, as a host receptor for Blr, allowing GBS translocation through endocytosis. Finally, we show that Blr is required for BBB crossing and pathogenicity in a murine model of infection. Our results demonstrate the potential of Drosophila for studying BBB crossing by pathogens and identify a new mechanism by which pathogens exploit the machinery of host barriers to generate brain infection.


Sign in / Sign up

Export Citation Format

Share Document