scholarly journals A New Bayesian Methodology for Nonlinear Model Calibration in Computational Systems Biology

Author(s):  
Fortunato Bianconi ◽  
Lorenzo Tomassoni ◽  
Chiara Antonini ◽  
Paolo Valigi
2019 ◽  
Author(s):  
Fortunato Bianconi ◽  
Lorenzo Tomassoni ◽  
Chiara Antonini ◽  
Paolo Valigi

AbstractComputational modeling is a common tool to quantitatively describe biological processes. However, most model parameters are usually unknown because they cannot be directly measured. Therefore, a key issue in Systems Biology is model calibration, i.e. estimate parameters from experimental data. Existing methodologies for parameter estimation are divided in two classes: frequentist and Bayesian methods. The first ones optimize a cost function while the second ones estimate the parameter posterior distribution through different sampling techniques. Here, we present an innovative Bayesian method, called Conditional Robust Calibration (CRC), for nonlinear model calibration and robustness analysis using omics data. CRC is an iterative algorithm based on the sampling of a proposal distribution and on the definition of multiple objective functions, one for each observable. CRC estimates the probability density function (pdf) of parameters conditioned to the experimental measures and it performs a robustness analysis, quantifying how much each parameter influences the observables behavior. We apply CRC to three Ordinary Differential Equations (ODE) models to test its performances compared to the other state of the art approaches, namely Profile Likelihood (PL), Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) and Delayed Rejection Adaptive Metropolis (DRAM). Compared with these methods, CRC finds a robust solution with a reduced computational cost. CRC is developed as a set of Matlab functions (version R2018), whose fundamental source code is freely available at https://github.com/fortunatobianconi/CRC.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Sahar Aghakhani ◽  
Naouel Zerrouk ◽  
Anna Niarakis

Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing various extracellular matrix proteins and collagen. They also provide the structural framework (stroma) for tissues and play a pivotal role in the wound healing process. While they are maintainers of the ECM turnover and regulate several physiological processes, they can also undergo transformations responding to certain stimuli and display aggressive phenotypes that contribute to disease pathophysiology. In this review, we focus on the metabolic pathways of glucose and highlight metabolic reprogramming as a critical event that contributes to the transition of fibroblasts from quiescent to activated and aggressive cells. We also cover the emerging evidence that allows us to draw parallels between fibroblasts in autoimmune disorders and more specifically in rheumatoid arthritis and cancer. We link the metabolic changes of fibroblasts to the toxic environment created by the disease condition and discuss how targeting of metabolic reprogramming could be employed in the treatment of such diseases. Lastly, we discuss Systems Biology approaches, and more specifically, computational modeling, as a means to elucidate pathogenetic mechanisms and accelerate the identification of novel therapeutic targets.


Author(s):  
Florencio Pazos ◽  
David Guijas ◽  
Manuel J. Gomez ◽  
Almudena Trigo ◽  
Victor de Lorenzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document