scholarly journals Non-viral Gene Delivery Methods for Bone and Joints

Author(s):  
Benjamin Gantenbein ◽  
Shirley Tang ◽  
Julien Guerrero ◽  
Natalia Higuita-Castro ◽  
Ana I. Salazar-Puerta ◽  
...  

Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.

2004 ◽  
Vol 20 (1-2) ◽  
pp. 25-32 ◽  
Author(s):  
O. K. Toporova ◽  
S. N. Novikova ◽  
L. I. Lihacheva ◽  
O. M. Suhorada ◽  
T. A. Ruban ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 31
Author(s):  
Farah Daou ◽  
Andrea Cochis ◽  
Massimiliano Leigheb ◽  
Lia Rimondini

Functional ability is the basis of healthy aging. Articular cartilage degeneration is amongst the most prevalent degenerative conditions that cause adverse impacts on the quality of life; moreover, it represents a key predisposing factor to osteoarthritis (OA). Both the poor capacity of articular cartilage for self-repair and the unsatisfactory outcomes of available clinical interventions make innovative tissue engineering a promising therapeutic strategy for articular cartilage repair. Significant progress was made in this field; however, a marked heterogeneity in the applied biomaterials, biofabrication, and assessments is nowadays evident by the huge number of research studies published to date. Accordingly, this literature review assimilates the most recent advances in cell-based and cell-free tissue engineering of articular cartilage and also focuses on the assessments performed via various in vitro studies, ex vivo models, preclinical in vivo animal models, and clinical studies in order to provide a broad overview of the latest findings and clinical translation in the context of degenerated articular cartilage and OA.


2013 ◽  
Vol 14 (1) ◽  
pp. 46-60 ◽  
Author(s):  
Weiwei Wang ◽  
Wenzhong Li ◽  
Nan Ma ◽  
Gustav Steinhoff

2020 ◽  
Vol 6 (31) ◽  
pp. eabc2148
Author(s):  
Yuting Wen ◽  
Hongzhen Bai ◽  
Jingling Zhu ◽  
Xia Song ◽  
Guping Tang ◽  
...  

It requires multistep synthesis and conjugation processes to incorporate multifunctionalities into a polyplex gene vehicle to overcome numerous hurdles during gene delivery. Here, we describe a supramolecular platform to precisely control, screen, and optimize molecular architectures of siRNA targeted delivery vehicles, which is based on rationally designed host-guest complexation between a β-cyclodextrin–based cationic host polymer and a library of guest polymers with various PEG shape and size, and various density of ligands. The host polymer is responsible to load/unload siRNA, while the guest polymer is responsible to shield the vehicles from nonspecific cellular uptake, to prolong their circulation time, and to target tumor cells. A series of precisely controlled molecular architectures through a simple assembly process allow for a rapid optimization of siRNA delivery vehicles in vitro and in vivo for therapeutic siRNA-Bcl2 delivery and tumor therapy, indicating the platform is a powerful screening tool for targeted gene delivery vehicles.


2007 ◽  
Vol 342-343 ◽  
pp. 449-452 ◽  
Author(s):  
Tae Hee Kim ◽  
Hua Jin ◽  
Hyun Woo Kim ◽  
Myung Haing Cho ◽  
Jae Woon Nah ◽  
...  

The key strategy for the advancement of gene therapy is the development of an efficient targeted gene delivery system into cells. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relatively low transfection efficiency. It also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency. Also, the potential of clinical application was investigated.


2006 ◽  
Vol 17 (7) ◽  
pp. 741-750 ◽  
Author(s):  
Faisal Sharif ◽  
Sean O. Hynes ◽  
Jill McMahon ◽  
Ronan Cooney ◽  
Siobhan Conroy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document