scholarly journals Non-viral gene delivery of human apoA1 into mammalian cells in vitro and in vivo

2004 ◽  
Vol 20 (1-2) ◽  
pp. 25-32 ◽  
Author(s):  
O. K. Toporova ◽  
S. N. Novikova ◽  
L. I. Lihacheva ◽  
O. M. Suhorada ◽  
T. A. Ruban ◽  
...  
Author(s):  
Benjamin Gantenbein ◽  
Shirley Tang ◽  
Julien Guerrero ◽  
Natalia Higuita-Castro ◽  
Ana I. Salazar-Puerta ◽  
...  

Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.


2007 ◽  
Vol 342-343 ◽  
pp. 449-452 ◽  
Author(s):  
Tae Hee Kim ◽  
Hua Jin ◽  
Hyun Woo Kim ◽  
Myung Haing Cho ◽  
Jae Woon Nah ◽  
...  

The key strategy for the advancement of gene therapy is the development of an efficient targeted gene delivery system into cells. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relatively low transfection efficiency. It also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency. Also, the potential of clinical application was investigated.


2006 ◽  
Vol 17 (7) ◽  
pp. 741-750 ◽  
Author(s):  
Faisal Sharif ◽  
Sean O. Hynes ◽  
Jill McMahon ◽  
Ronan Cooney ◽  
Siobhan Conroy ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Derek P. Wong ◽  
Nand K. Roy ◽  
Keman Zhang ◽  
Anusha Anukanth ◽  
Abhishek Asthana ◽  
...  

AbstractB cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 930 ◽  
Author(s):  
Henning Madry ◽  
Jagadeesh Kumar Venkatesan ◽  
Natalia Carballo-Pedrares ◽  
Ana Rey-Rico ◽  
Magali Cucchiarini

Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.


Sign in / Sign up

Export Citation Format

Share Document