scholarly journals Recent Advances in Organic Light-Emitting Diodes Based on Pure Organic Room Temperature Phosphorescence Materials

2019 ◽  
Vol 7 ◽  
Author(s):  
Ge Zhan ◽  
Zhiwei Liu ◽  
Zuqiang Bian ◽  
Chunhui Huang
2020 ◽  
Author(s):  
Heather Higginbotham ◽  
Masato Okazaki ◽  
Piotr de Silva ◽  
Satoshi Minakata ◽  
Youhei Takeda ◽  
...  

Room temperature phosphorescence materials offer great opportunities for applications in optoelectronics, due to their unique photophysical characteristics. However, purely organic emitters that can realize distinct electrophosphorescence are rarely exploited. Herein a new approach for designing heavy-atom-free organic room temperature phosphorescence emitters for organic light-emitting diodes is presented. The subtle tuning of the energy diagrams of singlet and triplet excited states by appropriate choice of host matrix allows tailored emission properties and switching of emission channels between thermally activated delayed fluorescence and room temperature phosphorescence. Moreover, an efficient and heavy-atom-free room temperature phosphorescence organic light-emitting diodes using the developed emitter is realized.


2015 ◽  
Vol 17 (2) ◽  
pp. 1134-1141 ◽  
Author(s):  
Jie Li ◽  
Yibin Jiang ◽  
Juan Cheng ◽  
Yilin Zhang ◽  
Huimin Su ◽  
...  

Tuning singlet–triplet energy gap of AIE luminogens: crystallization-induced phosphorescence, delay fluorescence and efficient non-doped OLEDs.


2020 ◽  
Author(s):  
Heather Higginbotham ◽  
Masato Okazaki ◽  
Piotr de Silva ◽  
Satoshi Minakata ◽  
Youhei Takeda ◽  
...  

Room temperature phosphorescence materials offer great opportunities for applications in optoelectronics, due to their unique photophysical characteristics. However, purely organic emitters that can realize distinct electrophosphorescence are rarely exploited. Herein a new approach for designing heavy-atom-free organic room temperature phosphorescence emitters for organic light-emitting diodes is presented. The subtle tuning of the energy diagrams of singlet and triplet excited states by appropriate choice of host matrix allows tailored emission properties and switching of emission channels between thermally activated delayed fluorescence and room temperature phosphorescence. Moreover, an efficient and heavy-atom-free room temperature phosphorescence organic light-emitting diodes using the developed emitter is realized.


2021 ◽  
Author(s):  
Yue Zhang ◽  
Dian Chen ◽  
Kai-Hang Jin ◽  
Shuang-Quan Zang ◽  
Qing-Lun Wang

Room-temperature phosphorescence (RTP) materials can be used in anti-counterfeiting, organic light-emitting diodes and displays. However, designing RTP materials with long luminescence lifetime and high solid-state emission efficiency is still a...


2020 ◽  
Vol 8 ◽  
Author(s):  
Wai-Pong To ◽  
Gang Cheng ◽  
Glenna So Ming Tong ◽  
Dongling Zhou ◽  
Chi-Ming Che

2016 ◽  
Vol 4 (39) ◽  
pp. 9116-9142 ◽  
Author(s):  
Rui-Peng Xu ◽  
Yan-Qing Li ◽  
Jian-Xin Tang

This review summarizes the recent achievements in flexible OLEDs involving transparent conductive electrodes, device fabrication, light extraction technologies, as well as encapsulation methods.


2018 ◽  
Vol 14 ◽  
pp. 282-308 ◽  
Author(s):  
Thanh-Tuân Bui ◽  
Fabrice Goubard ◽  
Malika Ibrahim-Ouali ◽  
Didier Gigmes ◽  
Frédéric Dumur

The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years.


Sign in / Sign up

Export Citation Format

Share Document