scholarly journals Edge Mostar Indices of Cacti Graph With Fixed Cycles

2021 ◽  
Vol 9 ◽  
Author(s):  
Farhana Yasmeen ◽  
Shehnaz Akhter ◽  
Kashif Ali ◽  
Syed Tahir Raza Rizvi

Topological invariants are the significant invariants that are used to study the physicochemical and thermodynamic characteristics of chemical compounds. Recently, a new bond additive invariant named the Mostar invariant has been introduced. For any connected graph ℋ, the edge Mostar invariant is described as Moe(ℋ)=∑gx∈E(ℋ)|mℋ(g)−mℋ(x)|, where mℋ(g)(or mℋ(x)) is the number of edges of ℋ lying closer to vertex g (or x) than to vertex x (or g). A graph having at most one common vertex between any two cycles is called a cactus graph. In this study, we compute the greatest edge Mostar invariant for cacti graphs with a fixed number of cycles and n vertices. Moreover, we calculate the sharp upper bound of the edge Mostar invariant for cacti graphs in ℭ(n,s), where s is the number of cycles.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jianxin Wei ◽  
Uzma Ahmad ◽  
Saira Hameed ◽  
Javaria Hanif

For a connected graph J, a subset W ⊆ V J is termed as a locating-total dominating set if for a ∈ V J ,   N a ∩ W ≠ ϕ , and for a ,   b ∈ V J − W ,   N a ∩ W ≠ N b ∩ W . The number of elements in a smallest such subset is termed as the locating-total domination number of J. In this paper, the locating-total domination number of unicyclic graphs and bicyclic graphs are studied and their bounds are presented. Then, by using these bounds, an upper bound for cacti graphs in terms of their order and number of cycles is estimated. Moreover, the exact values of this domination variant for some families of cacti graphs including tadpole graphs and rooted products are also determined.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 869
Author(s):  
Chunxiang Wang ◽  
Shaohui Wang ◽  
Jia-Bao Liu ◽  
Bing Wei

Let A ( G ) be the adjacent matrix and D ( G ) the diagonal matrix of the degrees of a graph G, respectively. For 0 ≤ α ≤ 1 , the A α -matrix is the general adjacency and signless Laplacian spectral matrix having the form of A α ( G ) = α D ( G ) + ( 1 − α ) A ( G ) . Clearly, A 0 ( G ) is the adjacent matrix and 2 A 1 2 is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles have at most one common vertex, that is an extension of the tree. The A α -spectral radius of a cactus graph with n vertices and k cycles is explored. The outcomes obtained in this paper can imply some previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined. Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched previous known results.


10.37236/8747 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Andrii Arman ◽  
Sergei Tsaturian

The main problem considered in this paper is maximizing the number of cycles in a graph with given number of edges. In 2009, Király conjectured that there is constant $c$ such that any graph with $m$ edges has at most $c(1.4)^m$ cycles. In this paper, it is shown that for sufficiently large $m$, a graph with $m$ edges has at most $(1.443)^m$ cycles. For sufficiently large $m$, examples of a graph with $m$ edges and $(1.37)^m$ cycles are presented. For a graph with given number of vertices and edges an upper bound on the maximal number of cycles is given. Also, bounds tight up to a constant are presented for the maximum number of cycles in a multigraph with given number of edges, as well as in a multigraph with given number of vertices and edges.


2021 ◽  
Vol 66 (3) ◽  
pp. 3-7
Author(s):  
Anh Nguyen Thi Thuy ◽  
Duyen Le Thi

Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


10.37236/8385 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Eben Blaisdell ◽  
András Gyárfás ◽  
Robert A. Krueger ◽  
Ronen Wdowinski

We show that for $n \geq 3, n\ne 5$, in any partition of $\mathcal{P}(n)$, the set of all subsets of $[n]=\{1,2,\dots,n\}$, into $2^{n-2}-1$ parts, some part must contain a triangle — three different subsets $A,B,C\subseteq [n]$ such that $A\cap B,A\cap C,B\cap C$ have distinct representatives. This is sharp, since by placing two complementary pairs of sets into each partition class, we have a partition into $2^{n-2}$ triangle-free parts.  We also address a more general Ramsey-type problem: for a given graph $G$, find (estimate) $f(n,G)$, the smallest number of colors needed for a coloring of $\mathcal{P}(n)$, such that no color class contains a Berge-$G$ subhypergraph. We give an upper bound for $f(n,G)$ for any connected graph $G$ which is asymptotically sharp when $G$ is a cycle, path, or star. Additional bounds are given when $G$ is a $4$-cycle and when $G$ is a claw.


1972 ◽  
Vol 15 (3) ◽  
pp. 437-440 ◽  
Author(s):  
I. Z. Bouwer ◽  
G. F. LeBlanc

Let G denote a connected graph with vertex set V(G) and edge set E(G). A subset C of E(G) is called a cutset of G if the graph with vertex set V(G) and edge set E(G)—C is not connected, and C is minimal with respect to this property. A cutset C of G is simple if no two edges of C have a common vertex. The graph G is called primitive if G has no simple cutset but every proper connected subgraph of G with at least one edge has a simple cutset. For any edge e of G, let G—e denote the graph with vertex set V(G) and with edge set E(G)—e.


1968 ◽  
Vol 11 (3) ◽  
pp. 499-501 ◽  
Author(s):  
J. A. Bondy

The distance d(x, y) between vertices x, y of a graph G is the length of the shortest path from x to y in G. The diameter δ(G) of G is the maximum distance between any pair of vertices in G. i.e. δ(G) = max max d(x, y). In this note we obtain an upper boundx ε G y ε Gfor δ(G) in terms of the numbers of vertices and edges in G. Using this bound it is then shown that for any complement-connected graph G with N verticeswhere is the complement of G.


2015 ◽  
Vol 25 (04) ◽  
pp. 299-308
Author(s):  
Frank Duque ◽  
Carlos Hidalgo-Toscano

A variation on the classical polygon illumination problem was introduced in [Aichholzer et al. EuroCG’09]. In this variant light sources are replaced by wireless devices called [Formula: see text]-modems, which can penetrate a fixed number [Formula: see text], of “walls”. A point in the interior of a polygon is “illuminated” by a [Formula: see text]-modem if the line segment joining them intersects at most [Formula: see text] edges of the polygon. It is easy to construct polygons of [Formula: see text] vertices where the number of [Formula: see text]-modems required to illuminate all interior points is [Formula: see text]. However, no non-trivial upper bound is known. In this paper we prove that the number of kmodems required to illuminate any polygon of [Formula: see text] vertices is [Formula: see text]. For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of [Formula: see text]. Moreover, we present an [Formula: see text] time algorithm to achieve this bound.


Sign in / Sign up

Export Citation Format

Share Document