scholarly journals An Upper Bound on the k-Modem Illumination Problem

2015 ◽  
Vol 25 (04) ◽  
pp. 299-308
Author(s):  
Frank Duque ◽  
Carlos Hidalgo-Toscano

A variation on the classical polygon illumination problem was introduced in [Aichholzer et al. EuroCG’09]. In this variant light sources are replaced by wireless devices called [Formula: see text]-modems, which can penetrate a fixed number [Formula: see text], of “walls”. A point in the interior of a polygon is “illuminated” by a [Formula: see text]-modem if the line segment joining them intersects at most [Formula: see text] edges of the polygon. It is easy to construct polygons of [Formula: see text] vertices where the number of [Formula: see text]-modems required to illuminate all interior points is [Formula: see text]. However, no non-trivial upper bound is known. In this paper we prove that the number of kmodems required to illuminate any polygon of [Formula: see text] vertices is [Formula: see text]. For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of [Formula: see text]. Moreover, we present an [Formula: see text] time algorithm to achieve this bound.

2018 ◽  
Vol 27 (08) ◽  
pp. 1850046
Author(s):  
Hyoungjun Kim ◽  
Sungjong No

The lattice stick number [Formula: see text] of a link [Formula: see text] is defined to be the minimal number of straight line segments required to construct a stick presentation of [Formula: see text] in the cubic lattice. Hong, No and Oh [Upper bound on lattice stick number of knots, Math. Proc. Cambridge Philos. Soc. 155 (2013) 173–179] found a general upper bound [Formula: see text]. A rational link can be represented by a lattice presentation with exactly 4 [Formula: see text]-sticks. An [Formula: see text]-circuit is the disjoint union of [Formula: see text] arcs in the lattice plane [Formula: see text]. An [Formula: see text]-circuit presentation is an embedding obtained from the [Formula: see text]-circuit by connecting each [Formula: see text] pair of vertices with one line segment above the circuit. By using a two-circuit presentation, we can easily find the lattice presentation with exactly four [Formula: see text]-sticks. In this paper, we show that an upper bound for the lattice stick number of rational [Formula: see text]-links realized with exactly four [Formula: see text]-sticks is [Formula: see text]. Furthermore, it is [Formula: see text] if [Formula: see text] is a two-component link.


2002 ◽  
Vol 12 (03) ◽  
pp. 249-261 ◽  
Author(s):  
XUEHOU TAN

Let π(a,b) denote the shortest path between two points a, b inside a simple polygon P, which totally lies in P. The geodesic distance between a and b in P is defined as the length of π(a,b), denoted by gd(a,b), in contrast with the Euclidean distance between a and b in the plane, denoted by d(a,b). Given two disjoint polygons P and Q in the plane, the bridge problem asks for a line segment (optimal bridge) that connects a point p on the boundary of P and a point q on the boundary of Q such that the sum of three distances gd(p′,p), d(p,q) and gd(q,q′), with any p′ ∈ P and any q′ ∈ Q, is minimized. We present an O(n log 3 n) time algorithm for finding an optimal bridge between two simple polygons. This significantly improves upon the previous O(n2) time bound. Our result is obtained by making substantial use of a hierarchical structure that consists of segment trees, range trees and persistent search trees, and a structure that supports dynamic ray shooting and shortest path queries as well.


Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


2019 ◽  
Vol 28 (05) ◽  
pp. 1950033
Author(s):  
Zac Bettersworth ◽  
Claus Ernst

In the paper, we study the incoherent nullification number [Formula: see text] of knots and links. We establish an upper bound on the incoherent nullification number of torus knots and links and conjecture that this upper bound is the actual incoherent nullification number of this family. Finally, we establish the actual incoherent nullification number of particular subfamilies of torus knots and links.


Author(s):  
Huda Chuangpishit ◽  
Jurek Czyzowicz ◽  
Ryan Killick ◽  
Evangelos Kranakis ◽  
Danny Krizanc

A set of mobile robots is placed at arbitrary points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of “spies”, i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots needs to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until all the non-faulty robots have met. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. In this paper, we give rendezvous algorithms with bounded competitive ratio, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. In general, regardless of the number of faults [Formula: see text] it can be shown that there is an algorithm with bounded competitive ratio. Further, we are able to give a rendezvous algorithm with optimal competitive ratio provided that the number [Formula: see text] of faults is strictly less than [Formula: see text]. Note, however, that in general this algorithm does not give an estimate on the actual value of the competitive ratio. However, when an upper bound on the number of byzantine robots is known to the central authority, we can provide algorithms with constant competitive ratios and in some instances we are able to show that these algorithms are optimal. Moreover, in the cases where the number of faults is either [Formula: see text] or [Formula: see text] we are able to compute the competitive ratio of an optimal rendezvous algorithm, for a small number of robots.


2014 ◽  
Vol 30 (6) ◽  
pp. 1272-1314 ◽  
Author(s):  
Zhibiao Zhao ◽  
Zhijie Xiao

We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér–Rao lower bound under appropriate conditions. In the case of nonregular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods.


Author(s):  
ATSUSHI KANEKO ◽  
M. KANO ◽  
KIYOSHI YOSHIMOTO

Let X and Y be two disjoint sets of points in the plane such that |X|=|Y| and no three points of X ∪ Y are on the same line. Then we can draw an alternating Hamilton cycle on X∪Y in the plane which passes through alternately points of X and those of Y, whose edges are straight-line segments, and which contains at most |X|-1 crossings. Our proof gives an O(n2 log n) time algorithm for finding such an alternating Hamilton cycle, where n =|X|. Moreover we show that the above upper bound |X|-1 on crossing number is best possible for some configurations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Farhana Yasmeen ◽  
Shehnaz Akhter ◽  
Kashif Ali ◽  
Syed Tahir Raza Rizvi

Topological invariants are the significant invariants that are used to study the physicochemical and thermodynamic characteristics of chemical compounds. Recently, a new bond additive invariant named the Mostar invariant has been introduced. For any connected graph ℋ, the edge Mostar invariant is described as Moe(ℋ)=∑gx∈E(ℋ)|mℋ(g)−mℋ(x)|, where mℋ(g)(or mℋ(x)) is the number of edges of ℋ lying closer to vertex g (or x) than to vertex x (or g). A graph having at most one common vertex between any two cycles is called a cactus graph. In this study, we compute the greatest edge Mostar invariant for cacti graphs with a fixed number of cycles and n vertices. Moreover, we calculate the sharp upper bound of the edge Mostar invariant for cacti graphs in ℭ(n,s), where s is the number of cycles.


Sign in / Sign up

Export Citation Format

Share Document