scholarly journals Thermodynamics-Based Model Construction for the Accurate Prediction of Molecular Properties From Partition Coefficients

2021 ◽  
Vol 9 ◽  
Author(s):  
Deliang Chen ◽  
Xiaoqing Huang ◽  
Yulan Fan

Developing models for predicting molecular properties of organic compounds is imperative for drug development and environmental safety; however, development of such models that have high predictive power and are independent of the compounds used is challenging. To overcome the challenges, we used a thermodynamics-based theoretical derivation to construct models for accurately predicting molecular properties. The free energy change that determines a property equals the sum of the free energy changes (ΔGFs) caused by the factors affecting the property. By developing or selecting molecular descriptors that are directly proportional to ΔGFs, we built a general linear free energy relationship (LFER) for predicting the property with the molecular descriptors as predictive variables. The LFER can be used to construct models for predicting various specific properties from partition coefficients. Validations show that the models constructed according to the LFER have high predictive power and their performance is independent of the compounds used, including the models for the properties having little correlation with partition coefficients. The findings in this study are highly useful for applications in drug development and environmental safety.

2008 ◽  
Vol 27 (9) ◽  
pp. 1130-1139 ◽  
Author(s):  
Laura M. Sprunger ◽  
Jennifer Gibbs ◽  
William E. Acree ◽  
Michael H. Abraham

1999 ◽  
Vol 88 (7) ◽  
pp. 670-679 ◽  
Author(s):  
Michael H. Abraham ◽  
James A. Platts ◽  
Anne Hersey ◽  
Albert J. Leo ◽  
Robert W. Taft

2017 ◽  
Vol 19 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Xiaochen Jin ◽  
Zhiqiang Fu ◽  
Xuehua Li ◽  
Jingwen Chen

This study develops pp-LFER models to predict octanol–air partition coefficients at different temperatures for diverse chemicals.


2022 ◽  
Author(s):  
Satoshi Endo

Polyparameter linear free energy relationships (PP-LFERs) are accurate and robust models to predict equilibrium partition coefficients (K) of organic chemicals. The accuracy of predictions by a PP-LEFR depends on the composition of the respective calibration data set. It is generally expected that extrapolation outside the model calibration domain is less accurate than interpolation. In this study, the applicability domain (AD) of PP-LFERs is systematically evaluated by calculation of the leverage (h), a measure of distance from the calibration set in the descriptor space. Repeated simulations with experimental data show that the root mean squared error of predictions increases with h, and that large prediction errors (>3 SDtraining, the standard deviation of training data) occur more frequently when h exceeds the common threshold of 3 hmean, where hmean is the mean h of all training compounds. Nevetheless, analysis also shows that well-calibrated PP-LFERs with many (e.g., 100), diverse, and accurate training data are highly robust against extrapolation; extreme prediction errors (> 5 SDtraining) are rare. For such PP-LFERs, 3 hmean may be too strict as the cutoff for AD. Evaluation of published PP-LFERs in terms of their AD using 25 chemically diverse, environmentally relevant chemicals as AD probes indicated that many reported PP-LFERs do not cover organosiloxanes, per- and polyfluorinated alkylsubstances, highly polar chemicals, and/or highly hydrophobic chemicals in their AD. It is concluded that calculation of h is useful to identify model extrapolations as well as the strengths and weaknesses of the trained PP-LFERs.


2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


2005 ◽  
Vol 102 (5) ◽  
pp. 542-553 ◽  
Author(s):  
César Augusto Fernandes De Oliveira ◽  
Cristiano Ruch Werneck Guimarães ◽  
Heloisa De Mello ◽  
Aurea Echevarria ◽  
Ricardo Bicca De Alencastro

Sign in / Sign up

Export Citation Format

Share Document