scholarly journals Inflammasome-mediated cell death in response to bacterial pathogens that access the host cell cytosol: lessons from legionella pneumophila

Author(s):  
Cierra N. Casson ◽  
Sunny Shin
1999 ◽  
Vol 112 (5) ◽  
pp. 681-693
Author(s):  
U.E. Schaible ◽  
P.H. Schlesinger ◽  
T.H. Steinberg ◽  
W.F. Mangel ◽  
T. Kobayashi ◽  
...  

The intracellular parasite Leishmania survives and proliferates in host macrophages. In this study we show that parasitophorous vacuoles of L. mexicana gain access to cytosolic material via two different routes. (1) Small anionic molecules such as Lucifer Yellow are rapidly transported into the vacuoles by an active transport mechanism that is sensitive to inhibitors of the host cell's organic anion transporter. (2) Larger molecules such as fluorescent dextrans introduced into the host cell cytosol are also delivered to parasitophorous vacuoles. This transport is slower and sensitive to modulators of autophagy. Infected macrophages were examined by two novel assays to visualize and quantify this process. Immunoelectron microscopy of cells loaded with digoxigenin-dextran revealed label in multivesicular endosomes, which appeared to fuse with parasitophorous vacuoles. The inner membranes of the multivesicular vesicles label strongly with antibodies against lysobisphosphatidic acid, suggesting that they represent a point of confluence between the endosomal and autophagosomal pathways. Although the rate of autophagous transfer was comparable in infected and uninfected cells, infected cells retained hydrolyzed cysteine proteinase substrate to a greater degree. These data suggest that L. mexicana-containing vacuoles have access to potential nutrients in the host cell cytosol via at least two independent mechanisms.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Hilary K. Truchan ◽  
Harry D. Christman ◽  
Richard C. White ◽  
Nakisha S. Rutledge ◽  
Nicholas P. Cianciotto

ABSTRACTLegionella pneumophilareplicates in macrophages in a host-derived phagosome, termed theLegionella-containing vacuole (LCV). While the translocation of type IV secretion (T4S) effectors into the macrophage cytosol is well established, the location of type II secretion (T2S) substrates in the infected host cell is unknown. Here, we show that the T2S substrate ProA, a metalloprotease, translocates into the cytosol of human macrophages, where it associates with the LCV membrane (LCVM). Translocation is detected as early as 10 h postinoculation (p.i.), which is approximately the midpoint of the intracellular life cycle. However, it is detected as early as 6 h p.i. if ProA is hyperexpressed, indicating that translocation depends on the timing of ProA expression and that any other factors necessary for translocation are in place by that time point. Translocation occurs with allL. pneumophilastrains tested and in amoebae, natural hosts forL. pneumophila. It was absent in murine bone marrow-derived macrophages and murine macrophage cell lines. The ChiA chitinase also associated with the cytoplasmic face of the LCVM at 6 h p.i. and in a T2S-dependent manner. Galectin-3 and galectin-8, eukaryotic proteins whose localization is influenced by damage to host membranes, appeared within the LCV of infected human but not murine macrophages beginning at 6 h p.i. Thus, we hypothesize that ProA and ChiA are first secreted into the vacuolar lumen by the activity of the T2S and subsequently traffic into the macrophage cytosol via a novel mechanism that involves a semipermeable LCVM.IMPORTANCEInfection of macrophages and amoebae plays a central role in the pathogenesis ofL. pneumophila, the agent of Legionnaires’ disease. We have previously demonstrated that the T2S system ofL. pneumophilagreatly contributes to intracellular infection. However, the location of T2S substrates within the infected host cell is unknown. This report presents the first evidence of aL. pneumophilaT2S substrate in the host cell cytosol and, therefore, the first evidence of a non-T4S effector trafficking out of the LCV. We also provide the first indication that the LCV is not completely intact but is instead semipermeable and that this occurs in human but not murine macrophages. Given this permeability, we hypothesize that other T2S substrates and LCV lumenal contents can escape into the host cell cytosol. Thus, these substrates may represent a battery of previously unidentified effectors that can interact with host factors and contribute to intracellular infection byL. pneumophila.


2011 ◽  
Vol 195 (6) ◽  
pp. 931-942 ◽  
Author(s):  
Hiroshi Ashida ◽  
Hitomi Mimuro ◽  
Michinaga Ogawa ◽  
Taira Kobayashi ◽  
Takahito Sanada ◽  
...  

Host cell death is an intrinsic immune defense mechanism in response to microbial infection. However, bacterial pathogens use many strategies to manipulate the host cell death and survival pathways to enhance their replication and survival. This manipulation is quite intricate, with pathogens often suppressing cell death to allow replication and then promoting it for dissemination. Frequently, these effects are exerted through modulation of the mitochondrial pro-death, NF-κB–dependent pro-survival, and inflammasome-dependent host cell death pathways during infection. Understanding the molecular details by which bacterial pathogens manipulate cell death pathways will provide insight into new therapeutic approaches to control infection.


2019 ◽  
Vol 25 (1) ◽  
pp. 166-173.e5 ◽  
Author(s):  
Ernst Jonscher ◽  
Sven Flemming ◽  
Marius Schmitt ◽  
Ricarda Sabitzki ◽  
Nick Reichard ◽  
...  

2006 ◽  
Vol 74 (11) ◽  
pp. 6479-6486 ◽  
Author(s):  
Feng Dong ◽  
Rhonda Flores ◽  
Ding Chen ◽  
Jianhua Luo ◽  
Youmin Zhong ◽  
...  

ABSTRACT Using antibodies raised with chlamydial fusion proteins, we have localized a protein encoded by the hypothetical open reading frame Cpn0797 in the cytoplasm of Chlamydia pneumoniae-infected host cells. The anti-Cpn0797 antibodies specifically recognized Cpn0797 protein without cross-reacting with either CPAFcp or Cpn0796, the only two proteins known to be secreted into the host cell cytosol by C. pneumoniae organisms. Thus, Cpn0797 represents the third C. pneumoniae protein secreted into the host cell cytosol experimentally identified so far.


Sign in / Sign up

Export Citation Format

Share Document