host cell cytosol
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Gregory Pedroso Santos ◽  
Fernanda Midori Abukawa ◽  
Normanda Souza‐Melo ◽  
Laura Maria Alcântara ◽  
Paula Bittencourt‐Cunha ◽  
...  

2020 ◽  
Author(s):  
Antonia R. Bass ◽  
Sunny Shin

AbstractThe inflammasome is an essential component of host defense against intracellular bacterial pathogens, such as Legionella pneumophila, the causative agent of the severe pneumonia Legionnaires’ disease. Inflammasome activation leads to recruitment and activation of caspases, which promote IL-1 family cytokine release and pyroptosis. In mice, interferon (IFN) signaling promotes inflammasome responses against L. pneumophila, in part through the functions of a family of IFN-inducible GTPases known as guanylate binding proteins (GBPs) (1). Within murine macrophages, IFN signaling promotes rupture of the L. pneumophila-containing vacuole (LCV), whereas GBPs are dispensable for vacuole rupture. Instead, GBPs facilitate the lysis of cytosol-exposed L. pneumophila. In contrast to mouse GBPs, the functions of human GBPs in inflammasome responses to L. pneumophila are poorly understood. Here, we show that IFN-γ promotes caspase-1, caspase-4, and caspase-5 inflammasome activation during L. pneumophila infection and upregulates GBP expression in primary human macrophages. We find that human GBP1 is important for maximal IFN-γ-driven inflammasome responses to L. pneumophila. Furthermore, IFN-γ signaling promotes the rupture of LCVs. Intriguingly, in contrast to murine GBPs, human GBP1 targets the LCV in a T4SS-dependent manner and promotes vacuolar lysis, resulting in increased bacterial access to the host cell cytosol. Our findings show a key role for human GBP1 in targeting and disrupting pathogen-containing vacuoles and reveal mechanistic differences in how mouse and human GBPs promote inflammasome responses to L. pneumophila.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Brittney N. Nguyen ◽  
Daniel A. Portnoy

Listeriolysin O (LLO) is a pore-forming cytolysin that allows Listeria monocytogenes to escape from phagocytic vacuoles and enter the host cell cytosol. LLO is expressed continuously during infection, but it has been a challenge to evaluate the importance of LLO secreted in the host cell cytosol because deletion of the gene encoding LLO (hly) prevents localization of L. monocytogenes to the cytosol. Here, we describe a L. monocytogenes strain (hlyfl) in which hly is flanked by loxP sites and Cre recombinase is under the transcriptional control of the L. monocytogenes actA promoter, which is highly induced in the host cell cytosol. In less than 2 h after infection of bone marrow-derived macrophages (BMMs), bacteria were 100% non-hemolytic. hlyfl grew intracellularly to levels 10-fold greater than wildtype L. monocytogenes and was less cytotoxic. In an intravenous mouse model, 90% of bacteria were non-hemolytic within three hours in the spleen and eight hours in the liver. The loss of LLO led to a 2-log virulence defect in the spleen and a 4-log virulence defect in the liver compared to WT L. monocytogenes. Thus, the production of LLO in the cytosol has significant impact on the pathogenicity of L. monocytogenes.


2020 ◽  
Vol 18 ◽  
pp. 205873922096084
Author(s):  
Lahiru Gangoda ◽  
Thanh Kha Phan ◽  
Sushma Anand ◽  
Mark D Hulett ◽  
Suresh Mathivanan

The innate immune system in mammals include pattern recognition receptors (PRRs), which initiate immune responses to microbial infection via several mechanisms. These PRRs include cell surface Toll-like receptors (TLRs) and cytosolic Nod-like receptors (NLRs) that recognizes extracellular and intracellular danger signals respectively. NLRs are poised to respond specifically to pathogens that access the host cell cytosol. The molecular mechanisms by which NLRs are activated to form inflammasomes and exert downstream inflammatory responses remain poorly understood. Additionally, very little is known about the regulation of cytosolic pathogen sensory NLR family members, except for NLRP3. Recently a deubiquitinase known as STAMBP has been implicated as a regulator of NLRP7 inflammasome assembly. We have investigated the role of STAMBP in regulation of other inflammasome components and its broader role in inflammation using genetic removal of STAMBP protein from cells using CRISPR/Cas9 gene editing and challenging these gene edited cells with an inflammatory stimuli. Our study demonstrated that STAMBP has a critical role in inflammation both in the context of NLR pathway, through NLRP stabilization and TLR pathway, through JNK signaling and downstream cytokine production. The findings indicate that STAMBP has a wider role in inflammation than previously thought to be the case.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
C. Kebbi-Beghdadi ◽  
L. Pilloux ◽  
A. Croxatto ◽  
N. Tosetti ◽  
T. Pillonel ◽  
...  

AbstractWaddlia chondrophila is an intracellular bacterium phylogenetically related to the well-studied human and animal pathogens of the Chlamydiaceae family. In the last decade, W. chondrophila was convincingly demonstrated to be associated with adverse pregnancy outcomes in humans and abortions in animals. All members of the phylum Chlamydiae possess a Type Three Secretion System that they use for delivering virulence proteins into the host cell cytosol to modulate their environment and create optimal conditions to complete their life cycle. To identify W. chondrophila virulence proteins, we used an original screening approach that combines a cosmid library with an assay monitoring resistance to predation by phagocytic amoebae. This technique combined with bioinformatic data allowed the identification of 28 candidate virulence proteins, including Wimp1, the first identified inclusion membrane protein of W. chondrophila.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sung-Moo Park ◽  
Tatsushi Omatsu ◽  
Yun Zhao ◽  
Naohiro Yoshida ◽  
Pankaj Shah ◽  
...  

AbstractThe innate immune response following infection with entero-invasive bacterial species is triggered upon release of cyclic di-guanylate monophosphate (c-di-GMP) into the host cell cytosol. Bacterial c-di-GMP activates the intracellular Sensor Stimulator of Interferon Genes (STING), encoded by Tmem173 in mice. Here we identify Interferon Regulatory Factor (IRF) 1 as a critical effector of STING-mediated microbial DNA sensing that is responsible for TH17 cell generation in the mucosal immune system. We find that STING activation induces IRF1-dependent transcriptional programs in dendritic cells (DCs) that define T cell fate determination, including induction of Gasdermin D, IL-1 family member cytokines, and enzymes for eicosanoid synthesis. Our results show that IRF1-dependent transcriptional programs in DCs are a prerequisite for antigen-specific TH17 subspecification in response to microbial c-di-GMP and Salmonella typhimurium infection. Our identification of a STING-IRF1 signaling axis for adaptive host defense control will aid further understanding of infectious disease mechanisms.


2019 ◽  
Vol 25 (1) ◽  
pp. 166-173.e5 ◽  
Author(s):  
Ernst Jonscher ◽  
Sven Flemming ◽  
Marius Schmitt ◽  
Ricarda Sabitzki ◽  
Nick Reichard ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. 92-97
Author(s):  
M.N. M.N.Boychenko ◽  
◽  
E.O. E.O.Kravtsova ◽  
E.V. E.V.Volchkova ◽  
O.F. O.F.Belaya ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Jonathan L. Portman ◽  
Samuel B. Dubensky ◽  
Bret N. Peterson ◽  
Aaron T. Whiteley ◽  
Daniel A. Portnoy

ABSTRACTUpon entry into the host cell cytosol, the facultative intracellular pathogenListeria monocytogenescoordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivationin vitro, PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (ΔgshF) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolicL. monocytogenesinterprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expressionin vivo.IMPORTANCEIntracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions.Listeria monocytogenesis a model intracellular pathogen with robustin vitroandin vivoinfection models. Studies of the host-sensing and downstream signaling mechanisms evolved byL. monocytogenesoften describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Dóra Hancz ◽  
Elsa Westerlund ◽  
Benedicte Bastiat-Sempe ◽  
Onkar Sharma ◽  
Christine Valfridsson ◽  
...  

ABSTRACT Group A Streptococcus (GAS) is a common human pathogen and the etiologic agent of a large number of diseases ranging from mild, self-limiting infections to invasive life-threatening conditions. Two prominent virulence factors of this bacterium are the genetically and functionally linked pore-forming toxin streptolysin O (SLO) and its cotoxin NAD+-glycohydrolase (NADase). Overexpression of these toxins has been linked to increased bacterial virulence and is correlated with invasive GAS disease. NADase can be translocated into host cells by a SLO-dependent mechanism, and cytosolic NADase has been assigned multiple properties such as protection of intracellularly located GAS bacteria and induction of host cell death through energy depletion. Here, we used a set of isogenic GAS mutants and a macrophage infection model and report that streptococcal NADase inhibits the innate immune response by decreasing inflammasome-dependent interleukin 1β (IL-1β) release from infected macrophages. Regulation of IL-1β was independent of phagocytosis and ensued also under conditions not allowing SLO-dependent translocation of NADase into the host cell cytosol. Thus, our data indicate that NADase not only acts intracellularly but also has an immune regulatory function in the extracellular niche. IMPORTANCE In the mid-1980s, the incidence and severity of invasive infections caused by serotype M1 GAS suddenly increased. The results of genomic analyses suggested that this increase was due to the spread of clonal bacterial strains and identified a recombination event leading to enhanced production of the SLO and NADase toxins in these strains. However, despite its apparent importance in GAS pathogenesis, the function of NADase remains poorly understood. In this study, we demonstrate that NADase inhibits inflammasome-dependent IL-1β release from infected macrophages. While previously described functions of NADase pertain to its role upon SLO-mediated translocation into the host cell cytosol, our data suggest that the immune regulatory function of NADase is exerted by nontranslocated enzyme, identifying a previously unrecognized extracellular niche for NADase functionality. This immune regulatory property of extracellular NADase adds another possible explanation to how increased secretion of NADase correlates with bacterial virulence. IMPORTANCE In the mid-1980s, the incidence and severity of invasive infections caused by serotype M1 GAS suddenly increased. The results of genomic analyses suggested that this increase was due to the spread of clonal bacterial strains and identified a recombination event leading to enhanced production of the SLO and NADase toxins in these strains. However, despite its apparent importance in GAS pathogenesis, the function of NADase remains poorly understood. In this study, we demonstrate that NADase inhibits inflammasome-dependent IL-1β release from infected macrophages. While previously described functions of NADase pertain to its role upon SLO-mediated translocation into the host cell cytosol, our data suggest that the immune regulatory function of NADase is exerted by nontranslocated enzyme, identifying a previously unrecognized extracellular niche for NADase functionality. This immune regulatory property of extracellular NADase adds another possible explanation to how increased secretion of NADase correlates with bacterial virulence.


Sign in / Sign up

Export Citation Format

Share Document