scholarly journals African Swine Fever Virus MGF360-14L Negatively Regulates Type I Interferon Signaling by Targeting IRF3

Author(s):  
Yang Wang ◽  
Shuai Cui ◽  
Ting Xin ◽  
Xixi Wang ◽  
Hainan Yu ◽  
...  

African swine fever (ASF) is a devastating infectious disease caused by African swine fever virus (ASFV). The ASFV genome encodes multiple structural and non-structural proteins that contribute to evasion of host immunity. In this study, we determined that the viral non-structural protein MGF360-14L inhibits interferon-β (IFN-β) promoter activity induced by cGAS-STING signaling. MGF360-14L was also found to downregulate expression of the IRF3 protein and promote its degradation through ubiquitin-meditated proteolysis. Moreover, MGF360-14L was shown to interact with and destabilize IRF3 by facilitating E3 ligase TRIM21-mediated K63-linked ubiquitination of IRF3. Overall, our study revealed that MGF360-14L promotes degradation of IRF3 through TRIM21, thereby inhibiting type I interferon production. These findings provide new insights into the mechanisms underlying ASFV immune evasion.

2021 ◽  
Author(s):  
Huisheng Liu ◽  
Zixiang Zhu ◽  
Tao Feng ◽  
Zhao Ma ◽  
Qiao Xue ◽  
...  

African swine fever is a devastating disease of swine caused by African swine fever virus (ASFV). The pathogenesis of the disease remains largely unknown, leaving the uncontrolled spreading of the disease in many countries and regions. Here, we identified the E120R, a structural protein of ASFV, as a key virulent factor and late phase expression protein of the virus. E120R revealed an activity to suppress host antiviral response through blocking IFN-β production, and the 72-73 amino acid sites in the C-terminal domain were essential for this function. E120R interacted with the interferon regulatory factor 3 (IRF3) and interfered with the recruitment of IRF3 to TBK1, which in turn suppressed IRF3 phosphorylation, decreasing interferon production. The recombinant mutant ASFV was further constructed to confirm the claimed mechanism. The ASFV lacking the complete E120R region could not be rescued, whereas the virus could tolerate the deletion of the 72nd and 73rd residuals in the E120R (ASFV E120R-Δ72-73aa). ASFV E120R with the two amino acids deletion failed to interact with IRF3 during ASFV E120R-Δ72-73aa infection, and the viral infection highly activated IRF3 phosphorylation and induced more robust type I interferon production in comparison with its parental ASFV. An unbiased transcriptome-wide analysis of gene expression also confirmed that a considerably higher level of ISGs was detected in ASFV E120R-Δ72-73aa-infected porcine alveolar macrophages (PAMs) than that in the wildtype ASFV-infected PAMs. Together, our findings found a novel mechanism evolved by ASFV to inhibit host antiviral response and provide a new target for guiding the development of ASFV live-attenuated vaccine. IMPORTANCE African swine fever is a highly contagious animal disease affecting pig industry worldwide, which has brought enormous economic losses. The causative agent African swine fever virus (ASFV) infection causes severe immunosuppression during viral infection, attributing to serious clinical manifestation. Therefore, identification of the viral proteins involved in immunosuppression is critical for ASFV vaccine design and development. Here, for the first time, we demonstrated that E120R protein, a structural protein of ASFV, played an important role in suppression of interferon regulatory factor 3 (IRF3) phosphorylation and type I interferon production by binding to IRF3 and blocking the the recruitment of IRF3 to TBK1. Deletion of the crucial binding sites in E120R critically increased interferon response during ASFV infection. This study explored a novel antagonistic mechanism of ASFV, which is critical for guiding the development of ASFV live-attenuated vaccines.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 361 ◽  
Author(s):  
Elisabetta Razzuoli ◽  
Giulia Franzoni ◽  
Tania Carta ◽  
Susanna Zinellu ◽  
Massimo Amadori ◽  
...  

African Swine Fever Virus (ASFV) has tropism for macrophages, which seems to play a crucial role in disease pathogenesis and viral dissemination. Previous studies showed that ASFV developed mechanisms to evade type I interferon (IFN) responses. Hence, we analyzed the ability of ASFV strains of diverse virulence to modulate IFN-β and IFN-α responses. Porcine monocyte-derived macrophages un-activated (moMΦ) or activated with IFN-α (moMΦ + FN-α) were infected with virulent (22653/14) or attenuated (NH/P68) ASFV strains, and expressions of IFN-β and of 17 IFN-α subtypes genes were monitored over time. ASFV strains of diverse virulence induced different panels of IFN genes: infection of moMΦ with either strains caused statistically significant up-regulation of IFN-α3, -α7/11, whereas only attenuated NH/P68 determined statistically significant up-regulation of IFN-α10, -α12, -α13, -α15, -α17, and IFN-β. Infection of activated moMΦ with either strains resulted in up-regulation of IFN-β and many IFN-α subtypes, but statistical significance was found only for IFN-α1, -α10, -α15, -α16, -α17 in response to NH/P68-infection only. These data revealed differences in type I IFNs expression patterns, with differences between strains of diverse virulence. In addition, virulent 22653/14 ASFV seems to have developed mechanisms to suppress the induction of several type I IFN genes.


Virology ◽  
2016 ◽  
Vol 493 ◽  
pp. 154-161 ◽  
Author(s):  
Josephine P. Golding ◽  
Lynnette Goatley ◽  
Steve Goodbourn ◽  
Linda K. Dixon ◽  
Geraldine Taylor ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 57
Author(s):  
Samuel Connell ◽  
Ana Reis ◽  
Anusyah Rathakrishnan ◽  
Sarah Gilbert ◽  
Linda Dixon

African Swine Fever Virus (ASFV) is a haemorrhagic infection of swine, which routinelydisplays 100% lethality. [...]


2004 ◽  
Vol 78 (8) ◽  
pp. 4299-4313 ◽  
Author(s):  
Javier M. Rodríguez ◽  
Ramón García-Escudero ◽  
María L. Salas ◽  
Germán Andrés

ABSTRACT The assembly of African swine fever virus (ASFV) at the cytoplasmic virus factories commences with the formation of precursor membranous structures, which are thought to be collapsed cisternal domains recruited from the surrounding endoplasmic reticulum (ER). This report analyzes the role in virus morphogenesis of the structural protein p54, a 25-kDa polypeptide encoded by the E183L gene that contains a putative transmembrane domain and localizes at the ER-derived envelope precursors. We show that protein p54 behaves in vitro and in infected cells as a type I membrane-anchored protein that forms disulfide-linked homodimers through its unique luminal cysteine. Moreover, p54 is targeted to the ER membranes when it is transiently expressed in transfected cells. Using a lethal conditional recombinant, vE183Li, we also demonstrate that the repression of p54 synthesis arrests virus morphogenesis at a very early stage, even prior to the formation of the precursor membranes. Under restrictive conditions, the virus factories appeared as discrete electron-lucent areas essentially free of viral structures. In contrast, outside the assembly sites, large amounts of aberrant zipper-like structures formed by the unprocessed core polyproteins pp220 and pp62 were produced in close association to ER cisternae. Altogether, these results indicate that the transmembrane structural protein p54 is critical for the recruitment and transformation of the ER membranes into the precursors of the viral envelope.


Sign in / Sign up

Export Citation Format

Share Document