scholarly journals Negotiating the Data Deluge on YouTube: Practices of Knowledge Appropriation and Articulated Ambiguity Around Visual Scenarios of Sea-Level Rise Futures

2021 ◽  
Vol 6 ◽  
Author(s):  
Simon David Hirsbrunner

The present study aims at evaluating how YouTube users understand, negotiate and appropriate science-related knowledge on YouTube. It is informed by the qualitative analysis of post-video discussions around visual scenarios of sea-level rise (SLR) triggered by climate change. On the one hand, the SLR maps have an exemplary status as contemporary visualizations of climate change risks, beyond traditional image categories such as scientific or popular imagery. YouTube, on the other hand, is a convenient media environment to investigate the situated appropriation of such visual knowledge, considering its increasing relevance as a navigational platform to provide, search, consume and debate science-related information. The paper draws on media practice theory and operationalizes digital methods and qualitative coding informed by Grounded Theory. It characterizes a number of communicative practices of articulated knowledge appropriation regarding climate knowledge. This includes “locating impacts,” “demanding representation,” “envisioning further,” “debating future action,” “relativizing the information,” “challenging the reality of anthropogenic climate change,” “embedding popular narratives,” “attributing to politics,” and “insulting others.” The article then discusses broader questions posed by the comments and related to the appropriation and discursive negotiation of knowledge within online video-sharing platforms. Ambiguity is identified as a major feature within the practice of science-related information retrieval and knowledge appropriation on YouTube. This consideration then serves as an opportunity to reconsider the relationship between information credibility and knowledge appropriation in the age of the digital. Findings suggest that ambiguity of information can have a positive impact on problem definition, future imagination and the discursive negotiation of climate change.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


2021 ◽  
Vol 14 ◽  
pp. 117863292110208
Author(s):  
Subhashni Taylor

Anthropogenic climate change and related sea level rise will have a range of impacts on populations, particularly in the low lying Pacific island countries (PICs). One of these impacts will be on the health and well-being of people in these nations. In such cases, access to medical facilities is important. This research looks at the medical facilities currently located on 14 PICs and how climate change related impacts such as sea level rise may affect these facilities. The medical infrastructure in each country were located using information from a range of sources such as Ministry of Health (MoH) websites, World Health Organization, Doctors Assisting in South Pacific Islands (DAISI), Commonwealth Health Online, and Google Maps. A spatial analysis was undertaken to identify medical infrastructure located within 4 zones from the coastline of each country: 0 to 50 m, 50 to 100 m, 100 to 200 m, and 200 to 500 m. The findings indicate that 62% of all assessed medical facilities in the 14 PICs are located within 500 m of the coast. The low-lying coral atoll countries of Kiribati, Marshall Islands, Nauru, Palau, Tokelau, and Tuvalu will be highly affected as all medical facilities in these countries fall within 500 m of the coast. The results provide a baseline analysis of the threats posed by sea-level rise to existing critical medical infrastructure in the 14 PICs and could be useful for adaptive planning. These countries have limited financial and technical resources which will make adaptation challenging.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


Terra Nova ◽  
1992 ◽  
Vol 4 (3) ◽  
pp. 293-304 ◽  
Author(s):  
J.C. Varekamp ◽  
E. Thomas ◽  
O. Plassche

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document