scholarly journals A Stochastic Framework to Optimize Monitoring Strategies for Delineating Groundwater Divides

2020 ◽  
Vol 8 ◽  
Author(s):  
Jonas Allgeier ◽  
Ana González-Nicolás ◽  
Daniel Erdal ◽  
Wolfgang Nowak ◽  
Olaf A. Cirpka

Surface-water divides can be delineated by analyzing digital elevation models. They might, however, significantly differ from groundwater divides because the groundwater surface does not necessarily follow the surface topography. Thus, in order to delineate a groundwater divide, hydraulic-head measurements are needed. Because installing piezometers is cost- and labor-intensive, it is vital to optimize their placement. In this work, we introduce an optimal design analysis that can identify the best spatial configuration of piezometers. The method is based on formal minimization of the expected posterior uncertainty in localizing the groundwater divide. It is based on the preposterior data impact assessor, a Bayesian framework that uses a random sample of models (here: steady-state groundwater flow models) in a fully non-linear analysis. For each realization, we compute virtual hydraulic-head measurements at all potential well installation points and delineate the groundwater divide by particle tracking. Then, for each set of virtual measurements and their possible measurement values, we assess the uncertainty of the groundwater-divide location after Bayesian updating, and finally marginalize over all possible measurement values. We test the method mimicking an aquifer in South-West Germany. Previous works in this aquifer indicated a groundwater divide that substantially differs from the surface-water divide. Our analysis shows that the uncertainty in the localization of the groundwater divide can be reduced with each additional monitoring well. In our case study, the optimal configuration of three monitoring points involves the first well being close to the topographic surface water divide, the second one on the hillslope toward the valley, and the third one in between.

2020 ◽  
Author(s):  
Jonas Allgeier ◽  
Ana Gonzalez-Nicolas ◽  
Daniel Erdal ◽  
Wolfgang Nowak ◽  
Olaf A. Cirpka

<p>The boundaries of surface-water catchments can be delineated by analyzing digital elevation models using geographic information systems. Surface-water divides and groundwater divides, however, might significantly differ from each other because the groundwater surface does not necessarily follow the surface topography. Hydraulic-head measurements are needed to properly delineate a groundwater divide and thereby the subsurface boundary of a catchment, but piezometers are expensive. It is therefore vital to optimize the placement of the necessary piezometers. In this work, we introduce an optimal design analysis, which can identify the best configuration of potential piezometer placements within a given set. The method is based on the formal minimization of the expected posterior uncertainty within a sampling-based Bayesian framework. It makes use of a random ensemble of behavioral steady-state groundwater flow models. For each behavioral realization we compute virtual hydraulic-head measurements at all potential well points and delineate the groundwater divide by particle tracking. We minimize the uncertainty of the groundwater-divide location by marginalizing over the virtual measurements. We test the method mimicking a real aquifer in South-West Germany. Previous works in this aquifer indicated a groundwater divide that is shifted compared to the surface-water divide. The analysis shows that the uncertainty in the localization of the groundwater divide can be reduced with each new well. A comparison of the maximum uncertainty reduction at different numbers of wells quantifies the added value of information for each new well. In our case study, the uncertainty reduction obtained by three monitoring points is maximized when the first well is close to the topographic surface water divide, the second one in the valley, and the third one in between. </p>


2007 ◽  
Vol 34 (9) ◽  
pp. 1038-1047 ◽  
Author(s):  
Musandji Fuamba ◽  
Gilles Brosseau ◽  
Éric Mainville

Optimal management of power plant units is achieved when the global efficiency of the units and the minimization of the total hydraulic head losses through the water transportation systems can be combined. Evaluating these hydraulic head losses appears to be very difficult due to the complexity of the flow conditions through the hydraulic structures. A hydraulic energy based method to determine head losses in the surge chamber has been proposed in this paper, as well as a method to manage the opening of units which would optimize the production of electricity. This method was applied to a case study, and successful results have been obtained showing how the head loss varies in the surge chamber.Key words: hydraulic head losses, power plant unit, surge chamber, unit efficiency, three-dimensional flow conditions, turbulent flow models, computational fluid dynamics.


2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


2011 ◽  
Vol 4 (5) ◽  
pp. 70-72
Author(s):  
Cristina Roşu ◽  
◽  
Ioana Piştea ◽  
Carmen Roba ◽  
Mihaela Mihu ◽  
...  

2010 ◽  
Vol 39 (2) ◽  
pp. 21-25
Author(s):  
Andrea Jain

This paper is an exploration of preksha dhyana as a case study of modern yoga. Preksha is a system of yoga and meditation introduced by Acarya Mahaprajna of the Jain Svetambara Terapanth in the late twentieth century. I argue that preksha is an attempt to join the newly emerging transnational yoga market whereby yoga has become a practice oriented around the attainment of physical health and psychological well-being. I will evaluate the ways in which Mahaprajna appropriates scientific discourse and in so doing constructs a new and unique system of Jain modern yoga. In particular, I evaluate the appropriation of physical and meditative techniques from ancient yoga systems in addition to the explanation of yoga metaphysics by means of biomedical discourse. I will demonstrate how, in Mahaprajna’s preksha system, the metaphysical subtle body becomes somaticized. In other words, Mahaprajna uses the bio-medical understanding of physiology to locate and identify the functions of metaphysical subtle body parts and processes in the physiological body.


Sign in / Sign up

Export Citation Format

Share Document