scholarly journals Precise Monitoring of Pore Pressure at Boreholes Around Nankai Trough Toward Early Detecting Crustal Deformation

2021 ◽  
Vol 9 ◽  
Author(s):  
Keisuke Ariyoshi ◽  
Toshinori Kimura ◽  
Yasumasa Miyazawa ◽  
Sergey Varlamov ◽  
Takeshi Iinuma ◽  
...  

In our recent study, we detected the pore pressure change due to the slow slip event (SSE) in March 2020 at the two borehole stations (C0002 and C0010), where the other borehole (C0006) close to the Nankai Trough seems not because of instrumental drift for the reference pressure on the seafloor to remove non-crustal deformation such as tidal and oceanic fluctuations. To overcome this problem, we use the seafloor pressure gauges of cabled network Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) stations nearby boreholes instead of the reference by introducing time lag between them. We confirm that the time lag is explained from superposition of theoretical tide modes. By applying this method to the pore pressure during the SSE, we find pore pressure change at C0006 about 0.6 hPa. We also investigate the impact of seafloor pressure due to ocean fluctuation on the basis of ocean modeling, which suggests that the decrease of effective normal stress from the onset to the termination of the SSE is explained by Kuroshio meander and may promote updip slip migration, and that the increase of effective normal stress for the short-term ocean fluctuation may terminate the SSE as observed in the Hikurangi subduction zone.

2021 ◽  
Vol 8 ◽  
Author(s):  
Keisuke Ariyoshi ◽  
Takeshi Iinuma ◽  
Masaru Nakano ◽  
Toshinori Kimura ◽  
Eiichiro Araki ◽  
...  

We have detected an event of pore pressure change (hereafter, we refer it to “pore pressure event”) from borehole stations in real time in March 2020, owing to the network developed by connecting three borehole stations to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) observatories near the Nankai Trough. During the pore pressure event, shallow very low-frequency events (sVLFEs) were also detected from the broadband seismometers of DONET, which suggests that the sVLFE migrated toward updip region along the subduction plate boundary. Since one of the pore pressure sensors have been suffered from unrecognized noise after the replacement of sensors due to the connecting operation, we assume four cases for crustal deformation component of the pore pressure change. Comparing the four possible cases for crustal deformation component of the volumetric strain change at C0010 with the observed sVLFE migration and the characteristic of previous SSEs, we conclude that the pore pressure event can be explained from SSE migration toward the updip region which triggered sVLFE in the passage. This feature is similar to the previous SSE in 2015 and could be distinguished from the unrecognized noise on the basis of t-test. Our new finding is that the SSE in 2020 did not reach very shallow part of the plate interface because the pore pressure changes at a borehole station installed in 2018 close to the trough axis was not significant. In the present study, we estimated the amount, onset and termination time of the pore pressure change for the SSE in 2020 by fitting regression lines for the time history. Since the change amount and duration time were smaller and shorter than the SSE in 2015, respectively, we also conclude that the SSE in 2020 had smaller magnitude that the SSE in 2015. These results would give us a clue to monitor crustal deformation along the Nankai Trough directly from other seafloor observations.


1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


2021 ◽  
Vol 8 ◽  
Author(s):  
Akira Nagano ◽  
Yusuke Yamashita ◽  
Keisuke Ariyoshi ◽  
Takuya Hasegawa ◽  
Hiroyuki Matsumoto ◽  
...  

The Kuroshio takes a greatly southward displaced path called a large-meander (LM) path off the southern coast of Japan on interannual to decadal time scales. The transition of the current path from a non-large-meander path to an LM path is the most salient ocean current variation south of Japan. The change in pressure on the seafloor due to the formation of the LM path in September 2017 is of critical importance to understand the dynamics of the LM path and to distinguish the change due to the Kuroshio path variation from changes due to crustal deformation. Hence, we examined the seafloor pressure across the continental slope off the eastern coast of Kyushu for the period March 2014 to April 2019. The pressure and its cross-slope gradient over the continental slope shallower than 3,000 m beneath near the Kuroshio are invariable. As a mesoscale current path disturbance, called a small meander, passed over the observation stations, the pressure decreased by approximately 0.1 dbar on the continental slope deeper than 3000 m and was kept low until the end of the observation period (April 2019). The pressure decrease is consistent with the changes in sea surface height and subsurface water density and is caused by the baroclinic enhancement of the Shikoku Basin local recirculation. This seafloor pressure change implies a strengthening of the deep southwestward current, possibly as a part of a deep cyclonic circulation in the Shikoku Basin. The present study demonstrated that, in addition to altimetric sea surface height data, hydrographic data are useful to distinguish the ocean variation in seafloor pressure from the variation due to crustal deformation, and vice versa.


2021 ◽  
Vol 9 ◽  
Author(s):  
Keisuke Ariyoshi ◽  
Toshinori Kimura ◽  
Yasumasa Miyazawa ◽  
Sergey Varlamov ◽  
Takeshi Iinuma ◽  
...  

2021 ◽  
Author(s):  
Isabel Ashman ◽  
Daniel Faulkner

<p>Many natural fault cores comprise volumes of extremely fine, low permeability, clay-bearing fault rocks. Should these fault rocks undergo transient volume changes in response to changes in fault slip velocity, the subsequent pore pressure transients would produce significant fault weakening or strengthening, strongly affecting earthquake nucleation and possibly leading to episodic slow slip events. Dilatancy at slow slip velocity has previously been measured in quartz-rich gouges but little is known about gouge containing clay. In this work, the mechanical behaviour of synthetic quartz-kaolinite fault gouges and their volume response to velocity step changes were investigated in a suite of triaxial deformation experiments at effective normal stresses of 60MPa, 25MPa and 10MPa. Kaolinite content was varied from 0 to 100wt% and slip velocity was varied between 0.3 and 3 microns/s.</p><p>Upon a 10-fold velocity increase or decrease, gouges of all kaolinite-quartz contents displayed measurable volume change transients. The results show the volume change transients are independent of effective normal stress but are sensitive to gouge kaolinite content. Peak dilation values did not occur in the pure quartz gouges, but rather in gouges containing 10wt% to 20wt% kaolinite. Above a kaolinite content of 10wt% to 20wt%, both dilation and compaction decreased with increasing gouge kaolinite content. At 25MPa effective normal stress, the normalised volume changes decreased from 0.1% to 0.06% at 10wt% to 100wt% kaolinite.  The gouge mechanical behaviour shows that increasing the gouge kaolinite content decreases the gouge frictional strength and promotes more stable sliding, rather than earthquake slip. Increasing the effective normal stress slightly decreases the frictional strength, enhances the chance of earthquake nucleation, and has no discernible effect on the magnitude of the pore volume changes during slip velocity changes.</p><p>Low permeabilities of clay-rich fault gouges, coupled with the observed volume change transients, could produce pore pressure fluctuations up to 10MPa in response to fault slip. This assumes no fluid escape from an isolated fault core. Where the permeability is finite, any pore pressure changes will be mediated by fluid influx into the gouge. Volume change transients could therefore be a significant factor in determining whether fault slip leads to earthquake nucleation or a dampened response, possibly resulting in episodic slow slip in low permeability fault rock volumes.</p>


2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


2012 ◽  
Vol 226-228 ◽  
pp. 2198-2202
Author(s):  
Zhi Lin Wu ◽  
Xiao Mei Wang

The propagation of the stress wave in axial direction during the impact between the front-end-coated projectile and the substrate coated by ceramic films is described by the stress wave theorem. The impact process is numerically simulated by ANSYS/LS-DYNA, where the shell unit is used for precision. The effects of thickness of the front-end coating on the interfacial stress are discussed in detail. Dependence of different ceramic films are also considered. Simulation results show that interfacial normal stress is much greater than tangential stress. The interfacial normal stress is greatest when the thickness of the projectile coating is 0.2 mm. The interfacial tangential stress increases slightly as the thickness of coating increases. Similar stress history in the interface occurs when the acoustic impedance of the films are close. Greater acoustic impedance results in smaller stress.


Sign in / Sign up

Export Citation Format

Share Document