large meander
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260629
Author(s):  
Yanhui Zhu ◽  
Kenji Minami ◽  
Yuka Iwahara ◽  
Kentaro Oda ◽  
Koichi Hidaka ◽  
...  

The Kuroshio Current can take two paths; usually it follows the regular pattern but occasionally it follows a pattern known as the large meander. In this study, we investigated the abundance of fish that migrate to coastal waters and the spatial distribution of fish schools under both Kuroshio patterns in Suzu district, Kochi prefecture, where the set net is the main fishery industry. We clarified the seasonal variation in the density and distribution of fish schools using a quantitative echo sounder. The effects of the Kuroshio large meander (LM) depended on the season. There was no effect of current pattern in summer or autumn, but in winter and spring the LM altered the marine environment and fish distributions. Cold water masses were formed in the survey area during winter and spring during the LM, and the water temperature dropped significantly compared with during the Kuroshio non-large meander (NLM). This altered the fish species and the distribution of fish schools in the survey area. The catches of Japanese horse mackerels (Trachurus japonicus) and Yellowtails (Seriola quinqueradiata) were much higher during the LM compared with those during the NLM. Unlike these two species, the small-sized pelagic fishes in spring has decreased significantly during the LM.


Author(s):  
Bo Qiu ◽  
Shuiming Chen

AbstractA unique characteristic by the Kuroshio off the southern coast of Japan is its bimodal path variations. In contrast to its straight path that follows coastline, the Kuroshio takes a large meander (LM) path when its axis detours southward by as much as 300 km. Since 1950, eight Kuroshio LM events took place and their occurrences appeared random. By synthesizing available in-situ/satellite observations and atmospheric reanalysis product, this study seeks to elucidate processes conducive for the LM occurrence. We find both changes in the inflow Kuroshio transport from the East China Sea and in the downstream Kuroshio Extension dynamic state are not determinant factors. Instead, intense anticyclonic eddies with transport > 20 Sv emanated from the Subtropical Countercurrent (STCC) are found to play critical roles in interacting with Kuroshio path perturbations southeast of Kyushu that generate positive relative vorticities along the coast and lead the nascent path perturbation to form a LM. Occurrence of this intense cyclonic{anticyclonic eddy interaction is favored when surface wind forcing over the STCC is anticyclonic during the positive phasing of Pacific decadal oscillations (PDOs). Such wind forcing strengthens the meridional Ekman flux convergence and enhances eddy generation by the STCC, and seven of the past eight LM events are found to be preceded by 1 ~ 2 years by the persistent anticyclonic wind forcings over the STCC. Rather than a fully random phenomenon, we posit that the LM occurrence is regulated by regional wind forcing with a positive PDO imprint.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daniel Andres Lizarbe Barreto ◽  
Ricardo Chevarria Saravia ◽  
Takeyoshi Nagai ◽  
Takafumi Hirata

The Kuroshio Large Meander (LM) is known to be highly aperiodic and can last from 1 to 10 years. Since a stationary cold core formed between the Kuroshio and the southern coast of Japan off Enshu-Nada and approaching warm saltier water on the eastern side of the LM changes the local environment drastically, many commercially valuable fish species distribute differently from the non-LM period, impacting local fisheries. Despite this importance of the LM, the influences of the LM on the low trophic levels such as phytoplankton and zooplankton have still been unclear. In this study, satellite daily sea surface chlorophyll data are analyzed in relation to the LM. The results show positive anomalies of the chlorophyll-a concentration along the Kuroshio path during the LM periods, 2004–2005 and 2017–2019, from the upstream off Shikoku to the downstream (140°E). These positive anomalies are started by the triggering meander generated off south of Kyushu, which then slowly propagates to the downstream LM region in both the LM periods. Even though the detailed patterns along the Kuroshio region in the two LM periods were different, similar formations of the positive anomalies on the western side of the LM with shallower mixed layer depth are observed. Furthermore, we found clear relationships between the minimum distance from several stations along the coast to the Kuroshio axis and the mean chlorophyll-a anomaly, with significant correlations with the distance from different stations.


Author(s):  
Eitarou Oka ◽  
Hatsumi Nishikawa ◽  
Shusaku Sugimoto ◽  
Bo Qiu ◽  
Niklas Schneider

AbstractSince August 2017, the Kuroshio has taken a large-meander (LM) path, which has forced the Kuroshio extension (KE) to be in its stable state against its wind-forced decadal variability. How such current conditions have impacted the formation and advection of North Pacific subtropical mode water (STMW) over its distribution region was examined using Argo float data during 2005–2020. Out of the whole STMW defined as a low-potential vorticity layer of 16–19.5 ºC, a relatively cold variety of 16–18 ºC, which was formed south of the KE and advected westward and southward, occupied more than 80% of the total volume. The formation rate of the 16–18 ºC variety was low during 2006–2009 in an unstable-KE period and high during 2010–2015 in a stable-KE period, and then dropped drastically in 2016 despite the KE still being in the stable state. After a short unstable-KE period in 2016–2017, the LM-forced, stable-KE period began, but the formation rate of the 16–18 ºC variety has not restored, possibly due to stronger background stratification propagated from the central North Pacific. In addition, the 16–18 ºC variety has had to make a southern detour around the LM, and its westward advection from the formation region south of the KE to the region south of Japan has been significantly decreased, possibly because it is dissipated more strongly over a southern part of the Izu–Ogasawara Ridge. Due to such decline in the formation and advection, the volume of the 16–18 ºC variety and hence that of the whole STMW have gradually decreased since 2016.


2021 ◽  
pp. 1-56
Author(s):  
Shusaku Sugimoto ◽  
Bo Qiu ◽  
Niklas Schneider

AbstractThe Kanto district, Japan, including Tokyo, has 40 million inhabitants and its summer climate is characterized by high temperature and humidity. The Kuroshio that flows off the southern coast of Kanto district has taken a large meander (LM) path since the summer of 2017 for the first time since the 2004–2005 event. Recently-developed satellite observations detected marked coastal warming off the Kanto-Tokai district during the LM path period. By conducting regional atmospheric model experiments, it is found that summertime coastal warming increases water vapor in the low-level atmosphere through enhanced evaporation from the ocean and influences near-surface winds via the vertical mixing effect over the warming area. These two changes induce an increase in water vapor in Kanto district, leading to an increase in downward longwave radiation at the surface and then surface warming through a local greenhouse effect. Resultantly the summer in Kanto district becomes increasingly hot and humid in LM years, with double the number of discomfort days compared with non-LM years. Our simulations and supplementary observational studies reveal the significant impacts of the LM-induced coastal warming on the summertime climate in Japan, which can exceed previously identified atmospheric teleconnections and climate patterns. Our results could improve weather and seasonal climate forecasts in this region.


2021 ◽  
Vol 8 ◽  
Author(s):  
Akira Nagano ◽  
Yusuke Yamashita ◽  
Keisuke Ariyoshi ◽  
Takuya Hasegawa ◽  
Hiroyuki Matsumoto ◽  
...  

The Kuroshio takes a greatly southward displaced path called a large-meander (LM) path off the southern coast of Japan on interannual to decadal time scales. The transition of the current path from a non-large-meander path to an LM path is the most salient ocean current variation south of Japan. The change in pressure on the seafloor due to the formation of the LM path in September 2017 is of critical importance to understand the dynamics of the LM path and to distinguish the change due to the Kuroshio path variation from changes due to crustal deformation. Hence, we examined the seafloor pressure across the continental slope off the eastern coast of Kyushu for the period March 2014 to April 2019. The pressure and its cross-slope gradient over the continental slope shallower than 3,000 m beneath near the Kuroshio are invariable. As a mesoscale current path disturbance, called a small meander, passed over the observation stations, the pressure decreased by approximately 0.1 dbar on the continental slope deeper than 3000 m and was kept low until the end of the observation period (April 2019). The pressure decrease is consistent with the changes in sea surface height and subsurface water density and is caused by the baroclinic enhancement of the Shikoku Basin local recirculation. This seafloor pressure change implies a strengthening of the deep southwestward current, possibly as a part of a deep cyclonic circulation in the Shikoku Basin. The present study demonstrated that, in addition to altimetric sea surface height data, hydrographic data are useful to distinguish the ocean variation in seafloor pressure from the variation due to crustal deformation, and vice versa.


2020 ◽  
Vol 33 (24) ◽  
pp. 10813-10828
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Niklas Schneider ◽  
Eitarou Oka ◽  
Shusaku Sugimoto

AbstractDecadal modulations of the Kuroshio Extension (KE) system between a stable and an unstable dynamic state in the western North Pacific have prevailed in the past three decades. This dominance of decadal variations is controlled by the negative feedback loop involving the wind-forced KE variability and its feedback onto the overlying extratropical storm tracks and the basin-scale surface wind field. The wind-forced decadal KE modulations were disrupted in August 2017 due to the development of the Kuroshio large meander south of Japan. By forcing the inflow KE paths northward and by avoiding overriding the shallow Izu Ridge, the Kuroshio large meander was able to compel the KE to change rapidly from the wind-forced, pre-existing, unstable state to a stable state. Following the large meander occurrence in late 2017, the stabilized KE change is found to affect the overlying storm tracks and the basin-scale wind field the same way as those generated by the wind-forced KE change prior to 2017. Given the consistent atmospheric response to both the large-meander-induced and wind-forced KE variability, we expect that the KE dynamic state will resume its decadal modulation after the phase reset relating to the 2017 large meander event.


Anthropocene ◽  
2020 ◽  
Vol 32 ◽  
pp. 100263
Author(s):  
Cindy Quik ◽  
Jasper H.J. Candel ◽  
Bart Makaske ◽  
Roy van Beek ◽  
Maurice Paulissen ◽  
...  

2020 ◽  
Vol 50 (11) ◽  
pp. 3189-3204
Author(s):  
Kunihiro Aoki ◽  
Yasumasa Miyazawa ◽  
Tsutomu Hihara ◽  
Toru Miyama

AbstractThis paper presents a method for detecting the ensemble means, spreads, and occurrence probabilities for each of the multiple Kuroshio states. This is accomplished by classifying the forecasts of the ensemble members with a Gaussian mixture distribution model, a machine learning method. Ensemble simulations with 80 members are conducted to reproduce possible occurrences of the multiple Kuroshio states, targeting the large meander event in 2017. To test its performance, first, the method is applied for the southernmost latitude, a conventional index that represents meander intensity. The results show that the Kuroshio initially taking the nearshore nonlarge meander state bifurcates into the large meander and offshore nonlarge meander states, which occur with similar probabilities. Both developments are accompanied by positive potential energy extraction rates, consistent with baroclinic instability. As a more objective approach, the method is then applied for the dominant modes derived from empirical orthogonal function (EOF) analysis of the sea surface height field in the entire Kuroshio region. Importantly, almost identical results can be achieved. In particular, the bimodality between the large meander and nonlarge meander is shown to appear on the axis of the first EOF mode. From a mathematical perspective, this mode can be interpreted as the singular vector which grows most rapidly following the time-evolution operator. Finally, the multimodality of the Kuroshio is reinterpreted as a phase transition phenomenon where the nearshore nonlarge meander constitutes the basic state.


2019 ◽  
Vol 76 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Bo Qiu ◽  
Atsushi Kojima

Sign in / Sign up

Export Citation Format

Share Document