scholarly journals Geochemical Characteristics and Origin of Formation Water From the Upper Triassic Xujiahe Tight Sandstone in the Xiaoquan-Fenggu Structural Belt, Western Sichuan Depression, China

2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Wang ◽  
Shuai Yin ◽  
Zhongmin Shen ◽  
Tong Zhu ◽  
Wenkai Zhang

Formation water represents an important driving force and carrier for the migration and accumulation of oil and gas; thus, research on its origin is a hot spot in petroleum geology. The Upper Triassic Xujiahe Formation in the Xiaoquan-Fenggu Structural Belt in the western Sichuan Depression, China, has developed thick tight sandstone gas reservoirs. However, previous studies have provided different conclusions on the origin of the formation water in the Xujiahe tight sandstone reservoir. In this paper, the origin of the formation water in the Xujiahe Formation was determined based on the latest major and minor elemental concentration data, hydrogen and oxygen isotopes data of formation water, and carbon and oxygen isotope data of carbonate cements. The results show that the salinity of the formation water of the Xujiahe Formation in the study area is generally greater than 50 g/L. The water type is mainly the CaCl2 type, although a small proportion of NaHCO3 type water with high salinity is observed, which is related to hydrocarbon expulsion by overpressure. Moreover, the formation water in the sandstone of the Xujiahe Formation is obviously rich in Br, which is related to membrane infiltration, overpressured hydrocarbon expulsion of shale and diagenesis of organic matter. The composition of Cl− and Na+ ions in the formation water in the Xujiahe tight sandstone reservoir is consistent with the seawater evaporation curve, which deviates significantly from the freshwater evaporation curve. The hydrogen and oxygen isotopes of condensate water in the Xujiahe Formation tight sandstone are similar to those of atmospheric precipitation water, while the hydrogen and oxygen isotopes of the formation water in the Xujiahe Formation show that it is of seawater origin. Therefore, to use hydrogen and oxygen isotopes to determine the origin of formation water, condensate water must be accurately differentiated from formation water. Otherwise, if the condensate water is misjudged as formation water, then incorrect conclusions will be drawn, e.g., that the formation water of the Xujiahe Formation originated from fresh water. Affected by organic carbon, the carbon isotope Z value of the carbonate cements in the Xujiahe Formation is low (mainly distributed between 110 and 130). A Z value of less than 120 does not indicate that the ancient water bodies formed by cements were fresh water or mixed water bodies. However, Z values greater than 120 correspond to a formation temperature lower than 80 C, which indicates that carbonate cement was not affected by organic carbon; thus, the Z value can reflect the origin of ancient water bodies. The results of this study indicate that the formation water of the Xujiahe tight sandstone in the study area is of seawater origin. The determination of the origin of the formation water and seawater of the Xujiahe Formation provides strong evidence for the determination of the marine sedimentary environment of the Xujiahe Formation in the study area, and can provide scientific guidance for the search for high-quality reservoirs.

2016 ◽  
Vol 223 ◽  
pp. 775-780 ◽  
Author(s):  
Haimeng Sun ◽  
Zhen Hu ◽  
Jian Zhang ◽  
Weizhong Wu ◽  
Shuang Liang ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 234-249
Author(s):  
Sibing Liu ◽  
Anqing Chen ◽  
Zhongmin Shen ◽  
Zhengxiang Lv ◽  
Xiaoxing Zhang

Abstract Secondary porosity in the Upper Triassic Xujiahe tight sandstone of the western Sichuan Basin is mainly the product of feldspar dissolution. In the Xu-4 Member, the upper reservoir of the Xujiahe Formation, feldspars are dissolved to a significant extent and observations indicate that nearly all feldspars have been dissolved completely, with only 1.73% content of feldspar remaining. In the Xu-2 Member, the lower reservoir, feldspars are well preserved; the current content of feldspar is 12.54% on average, and the secondary porosity derived from feldspar dissolution is less than 1%. Kaolinite occurs almost exclusively in the Xu-4, but it is nearly absent in the Xu-2. The K+ content in the Xu-2 is 3.3 times higher than that in Xu-4. The K+/H+ ratio in the Xu-2 is also higher than that in the Xu-4. These differences between the two reservoirs can be attributed to their distinguishing fluid-rock systems. The low K+ content and relatively high δ18O in the Xu-4 formation water are the result of intensive fluid-rock interaction in an open fluid-rock system. The upper Xu-4 is close to the overlying coal-measures of the Xu-5 from which organic acid flowed into the Xu-4. Meanwhile, K+ contained in sandstone migrated out to the mudstones. The resulting low K+/H+ ratio in the formation water of the Xu-4 was responsible for almost all the feldspar dissolution and kaolinite formation. In contrast, due to the relatively closed fluid-rock system in the Xu-2, K+ did not migrate into adjacent rocks and acidic fluids did not invade, which led to K+-rich formation waters maintaining a high K+/H+ ratio. Hence, K-feldspar was well preserved and kaolinite was completely transformed into illite. Therefore, in contrast to the Xu-2 tight sandstone, the Xu-4 sandstone has relatively higher secondary porosity, which favours the formation of better quality reservoirs.


2013 ◽  
Vol 868 ◽  
pp. 26-29
Author(s):  
Shuai Gao ◽  
Shi Zhong Ma ◽  
Yan Liu ◽  
Lian Bo Zeng ◽  
Lei Gong

Fractures control the distribution of tight sandstone gas reservoirs in the Second Member of Xujiahe Formation in the north of western Sichuan foreland basin. According to the data of filed outcrops, cores, image logs, slice and experimental analysis, we analyzed the genetic types, development characteristics, formation periods and forming mechanism of the fractures in the study area. Tectonic fracture and diagenesis fracture are the two types of fracture in the Second Member of Xujiahe tight sandstones. Between the two types, tectonic fracture is the main. They are mostly shear fractures with three sets of NEE-SWW, NNE-SSW and NW-SE orientations. Structural shear fractures mostly developed under the tectonism of the end of Indosinian, Yanshan and Himalaya stage. The force that formed tectonic fractures came from compression of Longmen Mountain and Micang-Daba Mountain, overpressure formed from deep buried and stress caused by uplift.


2019 ◽  
Vol 55 (6) ◽  
pp. 4604-4624
Author(s):  
Yi‐Jiang Zhong ◽  
Ke‐Ke Huang ◽  
Li‐Ming Ye ◽  
Ye‐Fang Lan ◽  
Lei Liu

2021 ◽  
pp. 1-18
Author(s):  
Yunzhao Zhang ◽  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Dongsheng Sun ◽  
Shuangquan Chen ◽  
...  

Abstract The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.


Sign in / Sign up

Export Citation Format

Share Document