scholarly journals Landscape Structure and Species Interactions Drive the Distribution of Salmon Carcasses in Coastal Watersheds

Author(s):  
Joel M. S. Harding ◽  
Jennifer N. Harding ◽  
Rachel D. Field ◽  
Jane E. Pendray ◽  
Noel R. Swain ◽  
...  
2007 ◽  
Vol 362 (1479) ◽  
pp. 461-472 ◽  
Author(s):  
Julian D Olden

Abstract In landscape ecology, substantial theoretical progress has been made in understanding how critical threshold levels of habitat loss may result in sudden changes in landscape connectivity to animal movement. Empirical evidence for such thresholds in real systems, however, remains scarce. Streambed landscapes provide a strong testing ground for studying critical thresholds because organisms are faced with substantial environmental heterogeneity while attempting to overcome the physical force of water. In this study, I report on the results from a series of experiments investigating the influence of habitat abundance and current velocity on the movement dynamics of two stream herbivores (caddisfly larva Agapetus boulderensis and snail Physa sp.) that differ substantially in how they perceive landscape structure. Specifically, I ask whether critical thresholds to herbivore movement exist in streambed landscapes. By exploiting the pattern recognition capabilities of artificial neural networks, I found that the rate, sinuosity and directionality of movement by Agapetus and Physa varied nonlinearly according to the abundance of habitat patches, current velocity and habitat–current interaction. Both the study organisms exhibited threshold responses to habitat abundance, yet the location and slope of these thresholds differed between species and with respect to different current velocities. These results suggest that a critical threshold in functional connectivity (i.e. the connection of habitat patches by dispersal) is not an inherent property of the landscape, but in fact emerges from the interplay of species' interactions with landscape structure. Moreover, current velocity interacted with habitat abundance to elicit strong upstream-oriented movement for both the species. This suggests that dispersing individuals may be polarized in the upstream direction and therefore functional connectivity is not equal in all directions. Such results highlight the need for future research addressing the sources of variability of critical threshold effects in ecological phenomena.


2020 ◽  
Vol 655 ◽  
pp. 139-155
Author(s):  
DC Yates ◽  
SI Lonhart ◽  
SL Hamilton

Marine reserves are often designed to increase density, biomass, size structure, and biodiversity by prohibiting extractive activities. However, the recovery of predators following the establishment of marine reserves and the consequent cessation of fishing may have indirect negative effects on prey populations by increasing prey mortality. We coupled field surveys with empirical predation assays (i.e. tethering experiments) inside and outside of 3 no-take marine reserves in kelp forests along the central California coast to quantify the strength of interactions between predatory fishes and their crustacean prey. Results indicated elevated densities and biomass of invertebrate predators inside marine reserves compared to nearby fished sites, but no significant differences in prey densities. The increased abundance of predators inside marine reserves translated to a significant increase in mortality of 2 species of decapod crustaceans, the dock shrimp Pandalus danae and the cryptic kelp crab Pugettia richii, in tethering experiments. Shrimp mortality rates were 4.6 times greater, while crab mortality rates were 7 times greater inside reserves. For both prey species, the time to 50% mortality was negatively associated with the density and biomass of invertebrate predators (i.e. higher mortality rates where predators were more abundant). Video analyses indicated that macro-invertivore fishes arrived 2 times faster to tethering arrays at sites inside marine reserves and began attacking tethered prey more rapidly. The results indicate that marine reserves can have direct and indirect effects on predators and their prey, respectively, and highlight the importance of considering species interactions in making management decisions.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


Author(s):  
Vivien Cosandey ◽  
Robin Séchaud ◽  
Paul Béziers ◽  
Yannick Chittaro ◽  
Andreas Sanchez ◽  
...  

AbstractBird nests are specialized habitats because of their particular composition including nest detritus and bird droppings. In consequence, they attract a specialized arthropod community considered as nidicolous, which includes species only found in bird nests (strictly nidicolous) or sometimes found in bird nests (facultatively nidicolous). Because the factors influencing the entomofauna in bird nests are poorly understood, in autumn 2019, we collected nest material in 86 Barn Owl (Tyto alba) nest boxes. We investigated whether the invertebrate species richness was related to Barn Owl nest box occupancy, the density of available nest boxes and the landscape structure. We found 3,321 nidicolous beetle specimens belonging to 24 species. Species richness of strictly nidicolous beetles was 2.7 times higher in nest boxes occupied by a family of Barn Owls the previous spring compared to unoccupied nest boxes. It was also higher in sites that were more often occupied by Barn Owls in the five previous years and in areas surrounded by a higher proportion of crop fields. For facultatively nidicolous beetles, the density of Barn Owl nest boxes enhanced the species richness. In conclusion, our study suggests that the strictly nidicolous beetles benefit from occupied nest boxes of Barn Owls, whereas facultatively nidicolous beetles look for nest boxes independently of whether Barn Owls occupy them. Our study highlights the importance of bird nests for a suite of invertebrates.


Sign in / Sign up

Export Citation Format

Share Document