scholarly journals Moderate Grazing Increases Water Use Efficiency for Environmental Health in Alpine Meadows of the Tibetan Plateau

2021 ◽  
Vol 9 ◽  
Author(s):  
Yunying Wang ◽  
Weiwei Pei ◽  
Guangmin Cao ◽  
Xiaowei Guo ◽  
Huakun Zhou ◽  
...  

Water use efficiency is an important indicator of drought tolerance in plants. The response of the water use efficiency to different grazing intensities and adaptive mechanisms in alpine meadows remains unclear. To understand the changes in water use in alpine meadow ecosystems under different grazing gradients, grazing systems have to be optimized, and severely receding grasslands should be effectively restored. This study analyzed the response of water use efficiency of plant dominant species, coexisting species, and functional group-level plants to grazing intensity using the δ13C index in an alpine meadow. We found that grazing increased the leaf carbon isotope composition in plants (δ13C) of Gramineae by 3.37% and grazing at a moderate level significantly increased it by 4.84% (P < 0.05). In addition, an increase in δ13C was observed in the functional groups of Cyperaceae (3.45%), Leguminosae (0.81%), and Forb (1.40%). However, some dominant species and coexisting species showed the highest δ13C values under moderate grazing. These results indicate that moderate grazing may significantly improve the water use efficiency of species in alpine meadows. The path analysis showed that water use efficiency was negatively correlated with evapotranspiration (P < 0.05), soil water content, soil organic carbon, and soil bulk density. Nevertheless, there was a positive correlation between water use efficiency and the available nitrogen. This study concluded that moderate grazing could improve the efficiency of grassland water use to a certain extent. Additionally, soil evapotranspiration was the main driving factor affecting the water use efficiency of alpine meadows.

2013 ◽  
Vol 119 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Hsien Ming Easlon ◽  
Krishna S. Nemali ◽  
James H. Richards ◽  
David T. Hanson ◽  
Thomas E. Juenger ◽  
...  

2017 ◽  
Vol 14 (14) ◽  
pp. 3431-3444 ◽  
Author(s):  
Na Zhao ◽  
Ping Meng ◽  
Yabing He ◽  
Xinxiao Yu

Abstract. In the context of global warming attributable to the increasing levels of CO2, severe drought may be more frequent in areas that already experience chronic water shortages (semiarid areas). This necessitates research on the interactions between increased levels of CO2 and drought and their effect on plant photosynthesis. It is commonly reported that 13C fractionation occurs as CO2 gas diffuses from the atmosphere to the substomatal cavity. Few researchers have investigated 13C fractionation at the site of carboxylation to cytoplasm before sugars are exported outward from the leaf. This process typically progresses in response to variations in environmental conditions (i.e., CO2 concentrations and water stress), including in their interaction. Therefore, saplings of two typical plant species (Platycladus orientalis and Quercus variabilis) from semiarid areas of northern China were selected and cultivated in growth chambers with orthogonal treatments (four CO2 concentration ([CO2])  ×  five soil volumetric water content (SWC)). The δ13C of water-soluble compounds extracted from leaves of saplings was determined for an assessment of instantaneous water use efficiency (WUEcp) after cultivation. Instantaneous water use efficiency derived from gas-exchange measurements (WUEge) was integrated to estimate differences in δ13C signal variation before leaf-level translocation of primary assimilates. The WUEge values in P. orientalis and Q.  variabilis both decreased with increased soil moisture at 35–80 % of field capacity (FC) and increased with elevated [CO2] by increasing photosynthetic capacity and reducing transpiration. Instantaneous water use efficiency (iWUE) according to environmental changes differed between the two species. The WUEge in P. orientalis was significantly greater than that in Q. variabilis, while an opposite tendency was observed when comparing WUEcp between the two species. Total 13C fractionation at the site of carboxylation to cytoplasm before sugar export (total 13C fractionation) was species-specific, as demonstrated in the interaction of [CO2] and SWC. Rising [CO2] coupled with moistened soil generated increasing disparities in δ13C between water-soluble compounds (δ13CWSC) and estimates based on gas-exchange observations (δ13Cobs) in P. orientalis, ranging between 0.0328 and 0.0472 ‰. Differences between δ13CWSC and δ13Cobs in Q. variabilis increased as [CO2] and SWC increased (0.0384–0.0466 ‰). The 13C fractionation from mesophyll conductance (gm) and post-carboxylation both contributed to the total 13C fractionation that was determined by δ13C of water-soluble compounds and gas-exchange measurements. Total 13C fractionation was linearly dependent on stomatal conductance, indicating that post-carboxylation fractionation could be attributed to environmental variation. The magnitude and environmental dependence of apparent post-carboxylation fractionation is worth our attention when addressing photosynthetic fractionation.


Sign in / Sign up

Export Citation Format

Share Document