scholarly journals Whole Exome Sequencing Aids the Diagnosis of Fetal Skeletal Dysplasia

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Tang ◽  
Qin Zhang ◽  
Jingjing Xiang ◽  
Linliang Yin ◽  
Jing Wang ◽  
...  

Skeletal dysplasia is a complex group of bone and cartilage disorders with strong clinical and genetic heterogeneity. Several types have prenatal phenotypes, and it is difficult to make a molecular diagnosis rapidly. In this study, the genetic cause of 16 Chinese fetuses with skeletal dysplasia were analyzed, and 12 cases yielded positive results including one deletion in DMD gene detected by SNP-array and 14 variants in other 6 genes detected by whole exome sequencing (WES). In addition, somatic mosaicism was observed. Our study expanded the pathogenic variant spectrum and elucidated the utilization of WES in improving the diagnosis yield of skeletal dysplasia.

2020 ◽  
Author(s):  
Hui Tang ◽  
Qin Zhang ◽  
Linliang Yin ◽  
Jingjing Xiang ◽  
Jing Wang ◽  
...  

Abstract Background: Skeletal dysplasia is a complex group of bone and cartilage disorders with strong clinical and genetical heterogeneousity. Several types have prenatal phenotypes. And it is difficult to make a molecular diagnosis rapidly due to lacking family history and non-specific and limited clinical symptoms in utero. This study aims to diagnose 16 Chinese fetuses with skeletal dysplasia.Methods: Single nucleotide polymorphism-array (SNP-array) was performed in 12 of 16 samples. If no microdeletions or microreplications related to skeletal dysplasia were detected, whole-exome sequencing (WES) was adopted. And the last four cases only got whole-exome sequencing for analyzing copy number variants and single nucleotide variations at the same time.Results: Among the 16 cases, 12 patients received definitive diagnosis and we detected one deletion in DMD gene by SNP-array and 15 variants of 6 genes including FGFR3, COL1A1, COL1A2, ALPL, HSPG2 and DYNC2H1. 8 variants of COL1A1, COL1A2, ALPL and HSPG2 are novel. And somatic mosaicism in asymptomatic parent with mutations in COL1A1 or COL1A2 was observed.Conclusions: In general, our study expanded the prenatal phenotypes in Duchenne muscular dystrophy (DMD)/ Becker muscular dystrophy (BMD), found 8 novel variants and elucidated that the utilization of whole-exome sequencing improved the diagnosis yield of skeletal dysplasia and provided useful genetic counseling guidance for parents.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109178 ◽  
Author(s):  
Jie Qing ◽  
Denise Yan ◽  
Yuan Zhou ◽  
Qiong Liu ◽  
Weijing Wu ◽  
...  

Cell Reports ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. 1446-1457 ◽  
Author(s):  
Weiwei Shi ◽  
Charlotte K.Y. Ng ◽  
Raymond S. Lim ◽  
Tingting Jiang ◽  
Sushant Kumar ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Laura Pezzoli ◽  
Lidia Pezzani ◽  
Ezio Bonanomi ◽  
Chiara Marrone ◽  
Agnese Scatigno ◽  
...  

Whole-exome sequencing (WES) is a powerful and comprehensive tool for the genetic diagnosis of rare diseases, but few reports describe its timely application and clinical impact on infantile cardiomyopathies (CM). We conducted a retrospective analysis of patients with infantile CMs who had trio (proband and parents)-WES to determine whether results contributed to clinical management in urgent and non-urgent settings. Twenty-nine out of 42 enrolled patients (69.0%) received a definitive molecular diagnosis. The mean time-to-diagnosis was 9.7 days in urgent settings, and 17 out of 24 patients (70.8%) obtained an etiological classification. In non-urgent settings, the mean time-to-diagnosis was 225 days, and 12 out of 18 patients (66.7%) had a molecular diagnosis. In 37 out of 42 patients (88.1%), the genetic findings contributed to clinical management, including heart transplantation, palliative care, or medical treatment, independent of the patient’s critical condition. All 29 patients and families with a definitive diagnosis received specific counseling about recurrence risk, and in seven (24.1%) cases, the result facilitated diagnosis in parents or siblings. In conclusion, genetic diagnosis significantly contributes to patients’ clinical and family management, and trio-WES should be performed promptly to be an essential part of care in infantile cardiomyopathy, maximizing its clinical utility.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Lara Pemberton ◽  
Robert Barker ◽  
Anna Cockell ◽  
Vijaya Ramachandran ◽  
Andrea Haworth ◽  
...  

Abstract Background Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. Case presentation In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. Conclusions This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities.


Sign in / Sign up

Export Citation Format

Share Document