scholarly journals Construction of Condition-Specific Gene Regulatory Network Using Kernel Canonical Correlation Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Dabin Jeong ◽  
Sangsoo Lim ◽  
Sangseon Lee ◽  
Minsik Oh ◽  
Changyun Cho ◽  
...  

Gene expression profile or transcriptome can represent cellular states, thus understanding gene regulation mechanisms can help understand how cells respond to external stress. Interaction between transcription factor (TF) and target gene (TG) is one of the representative regulatory mechanisms in cells. In this paper, we present a novel computational method to construct condition-specific transcriptional networks from transcriptome data. Regulatory interaction between TFs and TGs is very complex, specifically multiple-to-multiple relations. Experimental data from TF Chromatin Immunoprecipitation sequencing is useful but produces one-to-multiple relations between TF and TGs. On the other hand, co-expression networks of genes can be useful for constructing condition transcriptional networks, but there are many false positive relations in co-expression networks. In this paper, we propose a novel method to construct a condition-specific and combinatorial transcriptional network, applying kernel canonical correlation analysis (kernel CCA) to identify multiple-to-multiple TF–TG relations in certain biological condition. Kernel CCA is a well-established statistical method for computing the correlation of a group of features vs. another group of features. We, therefore, employed kernel CCA to embed TFs and TGs into a new space where the correlation of TFs and TGs are reflected. To demonstrate the usefulness of our network construction method, we used the blood transcriptome data for the investigation on the response to high fat diet in a human and an arabidopsis data set for the investigation on the response to cold/heat stress. Our method detected not only important regulatory interactions reported in previous studies but also novel TF–TG relations where a module of TF is regulating a module of TGs upon specific stress.

2019 ◽  
Vol 17 (04) ◽  
pp. 1950028 ◽  
Author(s):  
Md. Ashad Alam ◽  
Osamu Komori ◽  
Hong-Wen Deng ◽  
Vince D. Calhoun ◽  
Yu-Ping Wang

The kernel canonical correlation analysis based U-statistic (KCCU) is being used to detect nonlinear gene–gene co-associations. Estimating the variance of the KCCU is however computationally intensive. In addition, the kernel canonical correlation analysis (kernel CCA) is not robust to contaminated data. Using a robust kernel mean element and a robust kernel (cross)-covariance operator potentially enables the use of a robust kernel CCA, which is studied in this paper. We first propose an influence function-based estimator for the variance of the KCCU. We then present a non-parametric robust KCCU, which is designed for dealing with contaminated data. The robust KCCU is less sensitive to noise than KCCU. We investigate the proposed method using both synthesized and real data from the Mind Clinical Imaging Consortium (MCIC). We show through simulation studies that the power of the proposed methods is a monotonically increasing function of sample size, and the robust test statistics bring incremental gains in power. To demonstrate the advantage of the robust kernel CCA, we study MCIC data among 22,442 candidate Schizophrenia genes for gene–gene co-associations. We select 768 genes with strong evidence for shedding light on gene–gene interaction networks for Schizophrenia. By performing gene ontology enrichment analysis, pathway analysis, gene–gene network and other studies, the proposed robust methods can find undiscovered genes in addition to significant gene pairs, and demonstrate superior performance over several of current approaches.


2011 ◽  
Vol 5 (3) ◽  
pp. 2169-2196 ◽  
Author(s):  
Daniel Samarov ◽  
J. S. Marron ◽  
Yufeng Liu ◽  
Christopher Grulke ◽  
Alexander Tropsha

Author(s):  
Blaž Fortuna ◽  
Nello Cristianini ◽  
John Shawe-Taylor

We present a general method using kernel canonical correlation analysis (KCCA) to learn a semantic of text from an aligned multilingual collection of text documents. The semantic space provides a language-independent representation of text and enables a comparison between the text documents from different languages. In experiments, we apply the KCCA to the cross-lingual retrieval of text documents, where the text query is written in only one language, and to cross-lingual text categorization, where we trained a cross-lingual classifier.


2011 ◽  
Vol 32 (11) ◽  
pp. 1572-1583 ◽  
Author(s):  
Matthew B. Blaschko ◽  
Jacquelyn A. Shelton ◽  
Andreas Bartels ◽  
Christoph H. Lampert ◽  
Arthur Gretton

Sign in / Sign up

Export Citation Format

Share Document