scholarly journals The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Juanying Xie ◽  
Mingzhao Wang ◽  
Shengquan Xu ◽  
Zhao Huang ◽  
Philip W. Grant

To tackle the challenges in genomic data analysis caused by their tens of thousands of dimensions while having a small number of examples and unbalanced examples between classes, the technique of unsupervised feature selection based on standard deviation and cosine similarity is proposed in this paper. We refer to this idea as SCFS (Standard deviation and Cosine similarity based Feature Selection). It defines the discernibility and independence of a feature to value its distinguishable capability between classes and its redundancy to other features, respectively. A 2-dimensional space is constructed using discernibility as x-axis and independence as y-axis to represent all features where the upper right corner features have both comparatively high discernibility and independence. The importance of a feature is defined as the product of its discernibility and its independence (i.e., the area of the rectangular enclosed by the feature’s coordinate lines and axes). The upper right corner features are by far the most important, comprising the optimal feature subset. Based on different definitions of independence using cosine similarity, there are three feature selection algorithms derived from SCFS. These are SCEFS (Standard deviation and Exponent Cosine similarity based Feature Selection), SCRFS (Standard deviation and Reciprocal Cosine similarity based Feature Selection) and SCAFS (Standard deviation and Anti-Cosine similarity based Feature Selection), respectively. The KNN and SVM classifiers are built based on the optimal feature subsets detected by these feature selection algorithms, respectively. The experimental results on 18 genomic datasets of cancers demonstrate that the proposed unsupervised feature selection algorithms SCEFS, SCRFS and SCAFS can detect the stable biomarkers with strong classification capability. This shows that the idea proposed in this paper is powerful. The functional analysis of these biomarkers show that the occurrence of the cancer is closely related to the biomarker gene regulation level. This fact will benefit cancer pathology research, drug development, early diagnosis, treatment and prevention.

2013 ◽  
Vol 380-384 ◽  
pp. 1593-1599
Author(s):  
Hao Yan Guo ◽  
Da Zheng Wang

The traditional motivation behind feature selection algorithms is to find the best subset of features for a task using one particular learning algorithm. However, it has been often found that no single classifier is entirely satisfactory for a particular task. Therefore, how to further improve the performance of these single systems on the basis of the previous optimal feature subset is a very important issue.We investigate the notion of optimal feature selection and present a practical feature selection approach that is based on an optimal feature subset of a single CAD system, which is referred to as a multilevel optimal feature selection method (MOFS) in this paper. Through MOFS, we select the different optimal feature subsets in order to eliminate features that are redundant or irrelevant and obtain optimal features.


Patterns ◽  
2020 ◽  
Vol 1 (6) ◽  
pp. 100093
Author(s):  
Silu Huang ◽  
Charles Blatti ◽  
Saurabh Sinha ◽  
Aditya Parameswaran

Author(s):  
Chang Tang ◽  
Xinzhong Zhu ◽  
Xinwang Liu ◽  
Lizhe Wang

Multi-view unsupervised feature selection (MV-UFS) aims to select a feature subset from multi-view data without using the labels of samples. However, we observe that existing MV-UFS algorithms do not well consider the local structure of cross views and the diversity of different views, which could adversely affect the performance of subsequent learning tasks. In this paper, we propose a cross-view local structure preserved diversity and consensus semantic learning model for MV-UFS, termed CRV-DCL briefly, to address these issues. Specifically, we project each view of data into a common semantic label space which is composed of a consensus part and a diversity part, with the aim to capture both the common information and distinguishing knowledge across different views. Further, an inter-view similarity graph between each pairwise view and an intra-view similarity graph of each view are respectively constructed to preserve the local structure of data in different views and different samples in the same view. An l2,1-norm constraint is imposed on the feature projection matrix to select discriminative features. We carefully design an efficient algorithm with convergence guarantee to solve the resultant optimization problem. Extensive experimental study is conducted on six publicly real multi-view datasets and the experimental results well demonstrate the effectiveness of CRV-DCL.


Sign in / Sign up

Export Citation Format

Share Document