scholarly journals Activated IL-1RI Signaling Pathway Induces Th17 Cell Differentiation via Interferon Regulatory Factor 4 Signaling in Patients with Relapsing-Remitting Multiple Sclerosis

2016 ◽  
Vol 7 ◽  
Author(s):  
Yonggang Sha ◽  
Silva Markovic-Plese
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Vinod S. Ramgolam ◽  
Silva Markovic-Plese

Multiple sclerosis (MS) is an inflammatory demyelinating, presumably autoimmune disease of the central nervous system (CNS). Among the available MS therapies, interferon (IFN)β and the recently introduced statins have been reported to exert their immunomodulatory effects through the induction of SOCS1 and SOCS3 in various inflammatory cell subsets. The SOCS proteins negatively regulate cytokine and Toll-like receptors- (TLR-) induced signaling in the inflammatory cells. SOCS1 and SOCS3 have been reported to play an important role in the regulation of Th17-cell differentiation through their effects on the cells of the innate and adaptive immune systems. IFNβ and statins inhibit Th17-cell differentiation directly and indirectly via induction of SOCS1 and SOCS3 expression in monocytes, dendritic cells (DCs), and B-cells. Due to their rapid induction and degradation, and SOCS-mediated regulation of multiple cytokine-signaling pathways, they represent an attractive therapeutic target in the autoimmune diseases, and particularly relapsing remitting (RR) MS.


Cell Reports ◽  
2021 ◽  
Vol 36 (8) ◽  
pp. 109602
Author(s):  
Yuan Qian ◽  
Gabriel Arellano ◽  
Igal Ifergan ◽  
Jean Lin ◽  
Caroline Snowden ◽  
...  

Immunity ◽  
2006 ◽  
Vol 25 (2) ◽  
pp. 225-236 ◽  
Author(s):  
Roger Sciammas ◽  
A.L. Shaffer ◽  
Jonathan H. Schatz ◽  
Hong Zhao ◽  
Louis M. Staudt ◽  
...  

2002 ◽  
Vol 99 (18) ◽  
pp. 11808-11812 ◽  
Author(s):  
M. Lohoff ◽  
H.-W. Mittrucker ◽  
S. Prechtl ◽  
S. Bischof ◽  
F. Sommer ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Vera Buchele ◽  
Patrick Konein ◽  
Tina Vogler ◽  
Timo Kunert ◽  
Karin Enderle ◽  
...  

Inflammatory bowel diseases (IBDs) are characterized by chronic, inflammatory gastrointestinal lesions and often require life-long treatment with immunosuppressants and repetitive surgical interventions. Despite progress in respect to the characterization of molecular mechanisms e.g. exerted by TNF-alpha, currently clinically approved therapeutics fail to provide long-term disease control for most patients. The transcription factor interferon regulatory factor 4 (IRF4) has been shown to play important developmental as well as functional roles within multiple immune cells. In the context of colitis, a T cell-intrinsic role of IRF4 in driving immune-mediated gut pathology is established. Here, we conversely addressed the impact of IRF4 inactivation in non-T cells on T cell driven colitis in vivo. Employing the CD4+CD25− naïve T cell transfer model, we found that T cells fail to elicit colitis in IRF4-deficient compared to IRF4-proficient Rag1−/− mice. Reduced colitis activity in the absence of IRF4 was accompanied by hampered T cell expansion both within the mesenteric lymph node (MLN) and colonic lamina propria (cLP). Furthermore, the influx of various myeloids, presumably inflammation-promoting cells was abrogated overall leading to a less disrupted intestinal barrier. Mechanistically, gene profiling experiments revealed a Th17 response dominated molecular expression signature in colon tissues of IRF4-proficient, colitic Rag1−/− but not in colitis-protected Rag1−/−Irf4−/− mice. Colitis mitigation in Rag1−/−Irf4−/− T cell recipients resulted in reduced frequencies and absolute numbers of IL-17a-producing T cell subsets in MLN and cLP possibly due to a regulation of conventional dendritic cell subset 2 (cDC2) known to impact Th17 differentiation. Together, extending the T cell-intrinsic role for IRF4 in the context of Th17 cell driven colitis, the provided data demonstrate a Th17-inducing and thereby colitis-promoting role of IRF4 through a T cell-extrinsic mechanism highlighting IRF4 as a putative molecular master switch among transcriptional regulators driving immune-mediated intestinal inflammation through both T cell-intrinsic and T cell-extrinsic mechanisms. Future studies need to further dissect IRF4 controlled pathways within distinct IRF4-expressing myeloid cell types, especially cDC2s, to elucidate the precise mechanisms accounting for hampered Th17 formation and, according to our data, the predominant mechanism of colitis protection in Rag1−/−Irf4−/− T cell receiving mice.


Sign in / Sign up

Export Citation Format

Share Document