scholarly journals Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies

2020 ◽  
Vol 11 ◽  
Author(s):  
Arturo Macarrón Palacios ◽  
Julius Grzeschik ◽  
Lukas Deweid ◽  
Simon Krah ◽  
Stefan Zielonka ◽  
...  

The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B-cell lymphomas, the tumor cells express a tumor-specific and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-specific binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identified, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fluorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed specific binding to the parental SUP-B8 cell line confirming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a significant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable specific killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy.

Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2121-2127 ◽  
Author(s):  
Hai-Jun Zhou ◽  
Lan V. Pham ◽  
Archito T. Tamayo ◽  
Yen-Chiu Lin-Lee ◽  
Lingchen Fu ◽  
...  

Abstract CD40 is an integral plasma membrane–associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-κB protein c-Rel, but not p65, in LBCL cells. Nuclear CD40 forms complexes with c-Rel on the promoters of NF-κB target genes, CD154, BLyS/BAFF, and Bfl-1/A1, in various LBCL cell lines. Wild-type CD40, but not NLS-mutated CD40, further enhances c-Rel–mediated Blys promoter activation as well as proliferation in LBCL cells. Studies in normal B cells and LBCL patient cells further support a nuclear transcriptional function for CD40 and c-Rel. Cooperation between nuclear CD40 and c-Rel appears to be important in regulating cell growth and survival genes involved in lymphoma cell proliferation and survival mechanisms. Modulating the nuclear function of CD40 and c-Rel could reveal new mechanisms in LBCL pathophysiology and provide potential new targets for lymphoma therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 671-671 ◽  
Author(s):  
Stefanie Meyer ◽  
Sofija Vlasevska ◽  
Laura Garcia Ibanez ◽  
Claudio Scuoppo ◽  
Riccardo Dalla-Favera ◽  
...  

Abstract Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma, accounting for ~30% of de-novo diagnoses and also arising as a frequent clinical evolution of indolent lymphomas. Although curable in a substantial fraction of cases, one third of patients do not achieve durable remissions, highlighting the need for novel, targeted therapies. Over the past decade, we and others have identified the CREBBP acetyltransferase and, less frequently, its paralogue EP300 as highly recurrent targets of inactivating somatic mutations/deletions in DLBCL and follicular lymphoma (FL) (30% and 60% of patients, respectively), indicating a prominent role in the pathogenesis of these tumors (Pasqualucci et al., Nature 2011). In most cases, mutations are heterozygous and the residual wildtype (WT) allele is expressed, suggesting a haploinsufficient tumor suppressor role. Indeed, germinal center (GC)-specific loss of Crebbp perturbs the expression of genes that are relevant to the normal biology of this structure, i.e. the lymphoma cell of origin, and cooperates with BCL2 deregulation to increase the incidence of tumors recapitulating the features of the human disease (Zhang et al., Cancer Discovery 2017). Intringuingly, while CREBBP binds to virtually all GC-specific superenhancers, no detrimental effects were observed upon its deletion in mice, suggesting the existence of compensatory mechanisms. Consistent with this hypothesis, inactivation of CREBBP and EP300 rarely coexist in human DLBCL and FL, suggesting that cells require a certain amount of acetyltransferase activity. To investigate whether EP300 compensates for CREBBP loss in the GC, we analyzed the GC responses in compound mouse models engineered to specifically delete these two genes (alone and in combination) upon SRBC immunization and induction of a Cγ1-driven Cre-recombinase. While CrebbpKOmice showed a mild increase in GC formation, as reported, loss of Ep300 led to ~40% reduction in the percentage of GC cells (mean: 1.8% vs 3.1% in WT littermates; p<0.05), documenting that these two enzymes play non-entirely overlapping roles in this population. Importantly, GC formation was completely abrogated in CrebbpKOEp300KO mice and dramatically impaired in CrebbpHETEp300KO mice, as compared to both WT and single EP300KO mice. These data suggest that GC B cells require a minimum amount of acetyltransferase activity, and reveal a potential therapeutically exploitable dependency of Crebbp-mutated GC B cells on Ep300. In order to probe if a similar dependency exists in neoplastic GC B cells, we used an inducible CRISPR/Cas9 system to delete EP300 (or a control non-genic region) in 4 DLBCL cell lines representative of the various CREBBP genotypes found in DLBCL, and monitored cell proliferation and survival in competition assays over 12 days. Compared to CREBBPWT, CREBBP heterozygous and homozygous mutant cells were significantly counter-selected from the total population following doxycycline induced EP300 deletion (~30% at day 7). Moreover, no EP300-edited clones were recovered from the CREBBP mutant lines in single cell plating assays, compared to CREBBP WT (p<0.01). Thus, DLBCL cells remain addicted to the residual EP300 aceyltransferase activity, supporting the existence of a therapeutic window for EP300 inhibitors. To explore this concept further, we generated isogenic DLBCL clones carrying WT or defective CREBBP alleles (n=4 each), and performed drug-sensitivity assays with 2 novel small molecule inhibitors that specifically target the CREBBP/EP300 HAT or BRD domain. While, at higher doses, both inhibitors interfered with cell growth in all clones, CREBBPKO cells were significantly more sensitive than their isogenic WT pairsat low nanomolar ranges (IC50: 60nM vs 300nM). Importantly, we were able to design an in vitro protocol that was toxic to CREBBPKO cells but tolerated by CREBBPWT cells, providing a proof of concept for therapeutically targeting these molecules. In conclusion, we show that CREBBP and EP300 have differential roles in normal GC B cell development and that CREBBP mutated cells are addicted to the residual EP300 activity. This dependency is maintained in DLBCL cells, providing the basis for the potential application of acetyl transferase inhibition into the clinical settings. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (8) ◽  
pp. 1613-1623 ◽  
Author(s):  
Jinsheng Weng ◽  
Seema Rawal ◽  
Fuliang Chu ◽  
Hyun Jun Park ◽  
Rakesh Sharma ◽  
...  

Abstract Immunotherapy with therapeutic idiotype vaccines offers promise for treatment of B-cell malignancies. However, identification of novel immunogenic lymphoma-associated antigens that are universally expressed is necessary to overcome the barriers of patient-specific idiotype vaccines. Here, we determined whether T-cell leukemia/lymphoma 1 (TCL1) oncoprotein encoded by the TCL1 gene could be a target for immunotherapy of B-cell malignancies. We show that TCL1 mRNA and protein are selectively expressed in normal B cells but markedly hyperexpressed in multiple human B-cell lymphomas, including follicular lymphoma, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, and splenic marginal zone B-cell lymphoma. We demonstrated that TCL1-specific CD8+ T cells can be generated from HLA-A*0201 (HLA-A2)+ normal donors and identified TCL171-78 (LLPIMWQL) as the minimal epitope recognized by these T cells. More importantly, TCL171-78 peptide-specific T cells were present in the peripheral blood and tumor-infiltrating lymphocytes of lymphoma patients, could be expanded in vitro, and lysed autologous tumor cells but not normal B cells in an HLA-A2–restricted manner. Our results suggest that TCL1 is naturally processed and presented on the surface of lymphoma cells for recognition by cytotoxic T cells and can serve as a novel target for development of immunotherapeutic strategies against common B-cell lymphomas.


2020 ◽  
Author(s):  
Senlian Hong ◽  
Chenhua Yu ◽  
Peng Wang ◽  
Yujie Shi ◽  
Weiqian Cao ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. S404-S405
Author(s):  
Caron A. Jacobson ◽  
Frederick L. Locke ◽  
Armin Ghobadi ◽  
David B. Miklos ◽  
Lazaros J. Lekakis ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 508-514 ◽  
Author(s):  
Yukiko Nishi ◽  
Riko Kitazawa ◽  
Ryuma Haraguchi ◽  
Ayaka Ouchi ◽  
Yasuo Ueda ◽  
...  

Primary extranodal malignant lymphoma of the thyroid is a rare entity composed of mostly neoplastic transformation of germinal center-like B cells (GCB) or memory B cells. Other B-cell-type malignancies arising primarily in the thyroid have rarely been described. Immunohistochemical examination of autopsied primary malignant lymphoma of the thyroid in an 83-year-old Japanese female revealed the presence of a non-GCB subtype of diffuse large B-cell lymphoma (DLBCL) without the typical codon 206 or 265 missense mutation of MYD88. The lack of the highly oncogenic MYD88 gene mutation, frequently observed in DLBCL of the activated B-cell (ABC) subtype, and the detection of an extremely aggressive yet local clinical phenotype demonstrated that the present case was an exceptional entity of the type3 (non-GCB and non-ABC) subtype.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4503-4506 ◽  
Author(s):  
Anja Mottok ◽  
Christoph Renné ◽  
Marc Seifert ◽  
Elsie Oppermann ◽  
Wolf Bechstein ◽  
...  

Abstract STATs are constitutively activated in several malignancies. In primary mediastinal large B-cell lymphoma and Hodgkin lymphoma (HL), inactivating mutations in SOCS1, an inhibitor of JAK/STAT signaling, contribute to deregulated STAT activity. Based on indications that the SOCS1 mutations are caused by the B cell–specific somatic hypermutation (SHM) process, we analyzed B-cell non-HL and normal B cells for mutations in SOCS1. One-fourth of diffuse large B-cell lymphoma and follicular lymphomas carried SOCS1 mutations, which were preferentially targeted to SHM hotspot motifs and frequently obviously inactivating. Rare mutations were observed in Burkitt lymphoma, plasmacytoma, and mantle cell lymphoma but not in tumors of a non–B-cell origin. Mutations in single-sorted germinal center B cells were infrequent relative to other genes mutated as byproducts of normal SHM, indicating that SOCS1 inactivation in primary mediastinal large B-cell lymphoma, HL, diffuse large B-cell lymphoma, and follicular lymphoma is frequently the result of aberrant SHM.


Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2936-2939 ◽  
Author(s):  
Yulei Shen ◽  
Javeed Iqbal ◽  
James Z. Huang ◽  
Guimei Zhou ◽  
Wing C. Chan

Abstract The regulation of B-cell lymphoma 2 (BCL2) protein expression in germinal center (GC) B cells has been controversial. Previous reports have indicated posttranscriptional regulation plays a dominant role. However, a number of recent studies contradicted these reports. Using real-time polymerase chain reaction (PCR) and Standardized Reverse Transcriptase-PCR (StaRT-PCR), we measured the level of mRNA expression in GC, mantle zone (MNZ), and marginal zone (MGZ) cells from laser capture microdissection. Both quantitative RT-PCR measurements of microdissected GC cells from tonsils showed that GC cells had low expression of BCL2 transcripts commensurate with the low protein expression level. These results are in agreement with microarray studies on fluorescence-activated cell sorter (FACS)-sorted cells and microdissected GC cells. We also examined BCL2 mRNA and protein expression on a series of 30 cases of diffuse large B-cell lymphoma (DLBCL) and found, in general, a good correlation. The results suggested that BCL2 protein expression is regulated at the transcriptional level in normal B cells and in the neoplastic cells in most B-cell lymphoproliferative disorders.


Blood ◽  
2021 ◽  
Author(s):  
Miguel A Galindo-Campos ◽  
Nura Lutfi ◽  
Sarah Bonnin ◽  
Carlos Martínez ◽  
Talia Velasco-Hernandez ◽  
...  

Dysregulation of the c-Myc oncogene occurs in a wide variety of haematologic malignancies and its overexpression has been linked with aggressive tumour progression. Here, we show that Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphomas. PARP-1 and PARP-2 catalyse the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA-strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphomas, while PARP-1-deficiency accelerates lymphomagenesis in the Em-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in pre-leukemic Em-Myc B cells resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1-deficiency induces a proinflammatory response, and an increase in regulatory T cells likely contributing to immune escape of B-cell lymphomas, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centred therapeutic strategies with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumours.


Sign in / Sign up

Export Citation Format

Share Document