scholarly journals RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Magali Irla

Thymic epithelial cells (TECs) provide essential clues for the proliferation, survival, migration, and differentiation of thymocytes. Recent advances in mouse and human have revealed that TECs constitute a highly heterogeneous cell population with distinct functional properties. Importantly, TECs are sensitive to thymic damages engendered by myeloablative conditioning regimen used for bone marrow transplantation. These detrimental effects on TECs delay de novo T-cell production, which can increase the risk of morbidity and mortality in many patients. Alike that TECs guide the development of thymocytes, reciprocally thymocytes control the differentiation and organization of TECs. These bidirectional interactions are referred to as thymic crosstalk. The tumor necrosis factor receptor superfamily (TNFRSF) member, receptor activator of nuclear factor kappa-B (RANK) and its cognate ligand RANKL have emerged as key players of the crosstalk between TECs and thymocytes. RANKL, mainly provided by positively selected CD4+ thymocytes and a subset of group 3 innate lymphoid cells, controls mTEC proliferation/differentiation and TEC regeneration. In this review, I discuss recent advances that have unraveled the high heterogeneity of TECs and the implication of the RANK-RANKL signaling axis in TEC differentiation and regeneration. Targeting this cell-signaling pathway opens novel therapeutic perspectives to recover TEC function and T-cell production.

2020 ◽  
Author(s):  
Jiyoung Oh ◽  
Weikan Wang ◽  
Rachel Thomas ◽  
Dong-Ming Su

AbstractAge-associated systemic, chronic, sterile inflammatory condition (inflammaging) is partially attributed to increased self (auto)-reactivity, resulting from disruption of central tolerance in the aged, involuted thymus. Age-related thymic involution causally results from gradually declined expression of the transcription factor forkhead box N1 (FOXN1) in thymic epithelial cells (TECs), while exogenous FOXN1 in TECs can significantly rescue age-related thymic involution. Given the findings that induced TECs (iTECs) from FOXN1-overexpressing embryonic fibroblasts can generate an ectopic de novo thymus under the kidney capsule and intra-thymically injected natural young TECs can lead to middle-aged thymus regrowth, we sought to expand upon these two findings by applying them as a novel thymic rejuvenation strategy with two types of promoter-driven (Rosa26CreERT and FoxN1Cre) Cre-mediated iTECs. We engrafted iTECs, rather than natural young TECs, directly into the aged thymus and/or peri-thymus and found a significantly rejuvenated architecture and function in the native aged murine thymus. The engrafted iTECs drove regrowth of the aged thymus in both male and female mice, showing not only increased thymopoiesis, but also reinforcement of thymocyte negative selection, thereby, reducing senescent T cells and auto-reactive T cell-mediated inflammaging phenotypes in old mice. Therefore, this is a promising thymic rejuvenation strategy with preclinical significance, which can potentially rescue declined thymopoiesis and impaired negative selection to significantly, albeit partially, restore the defective central tolerance and reduce subclinical chronic inflammatory symptoms in the elderly.Graphical AbstractA novel rejuvenation strategy via the FOXN1-TEC axis using induced two types of FOXN1-overexpressing embryonic fibroblasts (termed iTECs) by intrathymic injection is able to counteract age-related thymic involution, which rescued negative selection, thereby, reducing peripheral T cell-associated inflammaging conditions.


2002 ◽  
Vol 195 (10) ◽  
pp. 1349-1358 ◽  
Author(s):  
Karen Honey ◽  
Terry Nakagawa ◽  
Christoph Peters ◽  
Alexander Rudensky

CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-Ab haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L–deficient mice expressing the I-Aq haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-Ab mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L−/− thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.


1993 ◽  
Vol 178 (6) ◽  
pp. 2231-2235 ◽  
Author(s):  
M R Alderson ◽  
R J Armitage ◽  
E Maraskovsky ◽  
T W Tough ◽  
E Roux ◽  
...  

The Fas gene encodes a cell surface molecule that is a member of the the nerve growth factor/tumor necrosis factor receptor family of proteins and can mediate programmed cell death (apoptosis) in certain transformed cell lines. To characterize further the biological function of Fas, particularly with regard to its function in normal cells, a panel of monoclonal antibodies (mAbs) was generated against the extracellular portion of human Fas. Some of these mAbs induced apoptosis in transformed cell lines expressing Fas, but only when immobilized on the culture vessel. One of the new Fas mAbs (M38) was used for studies on normal lymphoid cells and found to stimulate the proliferation of purified human T cells and thymocytes when immobilized on culture wells along with CD3 antibody. T cell proliferation induced by Fas mAb was largely interleukin 2 independent and was demonstrated to be due to a direct effect on the precursor T cell. Thus, the data demonstrate that in addition to a role in the induction of apoptosis in certain transformed cell lines, the Fas protein may also play an important role in the activation and proliferation of normal T cells.


2019 ◽  
Vol 216 (5) ◽  
pp. 1010-1011
Author(s):  
Adrian Liston ◽  
James Dooley

T cell tolerance depends upon Aire-expressing cells to purge the T cell repertoire of autoreactive clones. Once thought to be the exclusive domain of thymic epithelial cells, a new study by Yamano et al. (https://doi.org/10.1084/jem.20181430) in this issue of JEM identifies ILC3-like cells in the lymph nodes with similar properties.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1231-1231
Author(s):  
Onder Alpdogan ◽  
Vanessa M. Hubbard ◽  
Stephanie J. Muriglan ◽  
Adam A. Kochman ◽  
Jeffrey M. Eng ◽  
...  

Abstract KGF is a fibroblast growth factor family member (FGF-7) that mediates epithelial cell proliferation and differentiation in a variety of tissues, including thymic epithelial cells. Recent studies have demonstrated that KGF administration (before conditioning) to the recipients of allogeneic bone marrow transplantation (BMT) can enhance T cell and thymic reconstitution. Therefore, we studied the role of KGF on T cell development under normal and stress conditions (such as irradiation) by using KGF (−/−) mice in experimental murine models. Phenotypic analysis of KGF (−/−) mice at varying ages demonstrated that the bone marrow, thymus and lymph node cellularity and the cell distribution among KGF (−/−), wild type (WT) and KGF (+/−) mice (6–11 weeks of age) were similar. However, splenic cellularity and splenic T cell numbers were slightly lower than WT and littermate controls. KGF (−/−) mice are more vulnerable to sublethal irradiation (450–600 cGy) and a more than six fold decrease was found in thymic cellularity when analyzed on day 28 after irradiation, whereas there was no delay in the erythroid, myeloid and platelet recovery after irradiation. We used bone marrow transplantation models to assess the relative contribution of KGF produced by thymocytes or thymic epithelial cells during thymic regeneration after irradiation. T cell reconstitution was impaired in syngeneic or allogeneic KGF (−/−) BMT recipients in comparison to littermate controls but there was no difference in the distribution of thymocyte subsets or splenic T cell content. The recipients of KGF (−/−) bone marrow had decreased thymic and splenic cellularity after allogeneic BMT. These data demonstrate that both donor and host derived KGF play a role in thymic regeneration. Finally, KGF administration to young and old mice (10 month old) enhanced thymopoiesis when analyzed 28 days after KGF administration. Pre-BMT KGF administration to the recipients of syngeneic and allogeneic BMT also resulted in a 2–6 fold increase in the thymic cellularity compared to the control group. We conclude that KGF produced by both thymocytes and epithelial cells is not required for normal and post-natal thymic development, but plays a role in post-natal thymic regeneration after irradiation. These data support the potential use of KGF to protect or restore thymic damage after chemo/radiotherapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 835-835
Author(s):  
Phillip M. Garfin ◽  
Patrick Viatour ◽  
Dullei Min ◽  
Jerrod Bryson ◽  
Kenneth I. Weinberg ◽  
...  

Abstract Abstract 835 The establishment of the thymic microenvironment early in life is crucial for the production functional T cells. Conversely, thymic involution results in a decreased T cell output. Thymic involution has important health implications especially following bone marrow transplant. Our objective is to determine molecular and cellular mechanisms that will allow for regeneration of involuted thymic tissue, restore production of naïve T cells, and improve immune function while improving our understanding of immunobiology. In this pursuit, we have focused on the Retinoblastoma family of tumor suppressor proteins. The main function of the RB pathway is to restrict passage through the G1/S transition of the cell cycle. RB and its two family members, p107 and p130, mediate the action of a broad range of cellular signals to control the proliferation, survival, and differentiation status of a large number of mammalian cell types. We found that inactivation of the RB pathway in the thymus by early deletion of RB family genes prevents thymic involution, promotes expansion of functional thymic epithelial cells (TECs), and increases thymic T cell output. Moreover, we have identified a direct regulatory relationship between RB and the Foxn1 transcription factor Via E2F transcription factors, where RB/E2F complexes directly repress the Foxn1 promoter, thereby promoting involution. Thus, the RB family is a critical mediator of extra- and intra-cellular signals to regulate thymic epithelial cells and thymus function, and decreasing RB pathway function may promote regeneration of the involuted thymus and restoration of naïve T cell production in patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 637-637
Author(s):  
Tobias Wertheimer ◽  
Enrico Velardi ◽  
Christian Brede ◽  
Shiyun Xiao ◽  
Christopher C Kloss ◽  
...  

Abstract Endogenous thymic regeneration is a crucial function that allows for renewal of immune competence following immunodepletion caused by cytoreductive chemotherapy or radiation; however, the mechanisms governing this regeneration remain poorly understood. Moreover, despite this capacity, prolonged T cell deficiency is a major clinical hurdle in recipients of hematopoietic stem cell transplantation (HSCT) and can precipitate high morbidity and mortality from opportunistic infections, and may even facilitate malignant relapse. We have recently described a central role for group 3 innate lymphoid cells (ILC3) in a complex cellular and molecular network that drives endogenous thymic regeneration (Dudakov 2012 Science 336:91). Although IL-22 contributes considerably towards thymic regeneration and mice deficient for IL-22 lag behind WT controls in recovery of thymic function, there is still some tissue regeneration in these mice, suggesting that other regeneration pathways also play a role. Unlike other lymphoid cells, ILC3 were extremely radio-resistant with little if any depletion of cells after even lethal doses of total body irradiation (TBI). However, comprehensive analysis of all thymus-resident cell subsets revealed that ILCs were not the only damage-resistant population in the thymus as endothelial cells (ECs) were also remarkably resistant to damage in multiple clinically relevant models of acute tissue injury including corticosteroids, chemotherapy and sublethal total body irradiation (SL-TBI, 550cGy) (Fig. 1a). Thymopoiesis is dependent on the close interaction between developing thymocytes and the non-hematopoietic stromal microenvironment, which includes highly specialized thymic epithelial cells (TECs) and ECs. While the role of TECs has been well studied, the contribution of ECs to thymopoiesis and thymic regeneration remains largely unclear. Here we demonstrate that rather than just being passive conduits that deliver oxygen and nutrients, ECs are active participants in organ function producing distinct paracrine factors that orchestrate thymic repair. Using a technique whereby ECs are transduced with the adenoviral gene E4ORF1 - ECs could be expanded ex vivo (exEC) and, when administered to mice after SL-TBI, significantly boost recovery of thymic function (Fig. 1b). Intriguingly, this trophic effect was only observed when exEC were derived from the thymus but not when they were derived from heart or kidney (Fig. 1b). Mechanistically, in vivo administration of exEC(Thy) induced the expression by TECs of Foxn1 (Fig. 1c), a key transcription factor required for thymus organogenesis, maintenance and regeneration. In vitro co-culture assays revealed that conditioned media (CM) from exEC derived from the thymus, but not the heart or the kidney, could induce Foxn1 expression by TECs (Fig. 1d), in addition to the FOXN1 target genes Kitl and Dll4; a Notch ligand itself critical for T cell development. These findings suggest that thymus-derived exEC produce a soluble factor that contributes toward thymic regeneration via activation of Foxn1. Transcriptome analysis of highly purified thymic ECs after SL-TBI identified that, among other things, expression of Bmp4 was significantly increased, offering a potential mechanism by which thymic ECs mediate their regeneration. Consistent with this hypothesis, not only could recombinant BMP4 promote the expression of Foxn1 by TECs in vitro, induction of Foxn1 by CM from exEC(Thy) was abrogated by Noggin, an inhibitor of BMP4 signaling (Fig. 1e). Moreover, exEC(Thy) produced significantly more BMP4 compared to exEC derived from the heart or kidney; and silencing Bmp4 expression by shRNA within exEC(Thy) limited their capacity to mediate exogenous thymic regeneration and failed to induce expression of Foxn1 and Dll4. Finally, strengthening its role in endogenous regeneration, administration of a pharmacologic BMP inhibitor inhibited thymic regeneration after SL-TBI; and inducible deletion of Bmp4 specifically in ECs reduced thymic regeneration after SL-TBI (Fig. 1f). These studies not only detail a novel pathway promoting endogenous thymic regeneration, but also offer an innovative clinical approach to enhance T cell immunity in recipients of allo-HSCT and for individuals with T cell deficiencies due to aging, infectious disease, and common cancer treatments such as chemo- and radiation-therapy. Disclosures Rafii: Angiocrine Bioscience: Other: Founder of Angiocrine Biosceince, which is developing the technology behind endothelial cell propagation. van den Brink:Boehringer Ingelheim: Consultancy, Other: Advisory board attendee; Regeneron: Honoraria; Merck: Honoraria; Tobira Therapeutics: Other: Advisory board attendee; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document