scholarly journals The Role of CLEC-2 and Its Ligands in Thromboinflammation

2021 ◽  
Vol 12 ◽  
Author(s):  
Danyang Meng ◽  
Man Luo ◽  
Beibei Liu

C-type lectin-like receptor 2 (CLEC-2, also known as CLEC-1b) is expressed on platelets, Kupffer cells and other immune cells, and binds to various ligands including the mucin-like protein podoplanin (PDPN). The role of CLEC-2 in infection and immunity has become increasingly evident in recent years. CLEC-2 is involved in platelet activation, tumor cell metastasis, separation of blood/lymphatic vessels, and cerebrovascular patterning during embryonic development. In this review, we have discussed the role of CLEC-2 in thromboinflammation, and focused on the recent research.

1994 ◽  
Vol 210 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Kenneth V. Honn ◽  
Dean G. Tang ◽  
Irma M. Grossi ◽  
Colette Renaud ◽  
Zofia M. Duniec ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sarah E Wetzel-Strong ◽  
Manyu Li ◽  
Toshio Nishikimi ◽  
Kathleen M Caron

The multi-functional peptide adrenomedullin ( Adm = gene, AM = protein) plays important roles in embryonic development and disease. Previous studies demonstrated that Adm knockout mice die at embryonic day 13.5 with small, disorganized hearts and hypoplastic lymphatic vessels, highlighting the importance of this peptide in normal cardiovascular development. Since Adm knockout animals are embryonic lethal, our goal was to generate and characterize a novel model of Adm over-expression to study the role of Adm during development and disease processes. Through gene targeting techniques, we generated a novel mouse model of Adm over-expression, abbreviated as Adm hi/hi . When we assessed gene expression of Adm from 10 different tissues, we found Adm hi/hi mice express 3- to 15-fold more Adm than wildtype littermates. Additionally, peptide levels of AM in lung and kidney, as well as circulating plasma levels of AM were elevated 3-fold over wildtype mice, indicating a functional increase in AM. Our initial analysis revealed that adult Adm hi/hi mice have larger heart weight to body weight ratios than wildtype littermates (4.93±0.23 vs. 5.96±0.29, n = 11-12). We found that compared to wildtype, Adm hi/hi embryos have more proliferating cells during heart development (14.46±1.11 vs. 31.97±2.84, n=4), indicating that hyperplasia drives Adm hi/hi heart enlargement. By crossing the Adm hi/hi line to different tissue-specific Cre lines, we were able to excise the stabilizing bovine growth hormone 3’UTR, thereby returning Adm expression levels back to wildtype in cells with active Cre recombinase. Using this approach, we identified the epicardium as a major source of AM during cardiac development. In conclusion, we found that AM derived primarily from the epicardium drives cardiac hyperplasia during embryonic development resulting in persistent, enlarged hearts of adult Adm hi/hi mice. Since our Adm hi/hi mice recapitulate the 3-fold plasma elevation of AM observed during human disease, this mouse line will be a useful tool for studying the role of elevated AM during disease.


1987 ◽  
Vol 31 (6) ◽  
pp. 342-348 ◽  
Author(s):  
Will J. Kort ◽  
Ineke M. Weijma ◽  
Toos E.M. Stehmann ◽  
Antoine J. Vergroesen ◽  
Dick L. Westbroek

Sign in / Sign up

Export Citation Format

Share Document