scholarly journals NK Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation: Association Between NK Cell Maturation Stage and Outcome in Multiple Myeloma

2021 ◽  
Vol 12 ◽  
Author(s):  
Ane Orrantia ◽  
Iñigo Terrén ◽  
Gabirel Astarloa-Pando ◽  
Carmen González ◽  
Alasne Uranga ◽  
...  

Autologous hematopoietic stem cell transplantation (autoHSCT) is a standard of care for transplant-eligible patients with multiple myeloma (MM). Among factors that influence outcome after autoHSCT, it has been suggested that the number of natural killer (NK) cells plays an important role. However, the impact that different NK cell subsets and their phenotype could have in disease progression after autoHSCT are less clear. For this reason, we have phenotypically and functionally characterized NK cells during immune system reconstitution after autoHSCT in 54 MM patients. Shortly after leukocyte recovery, an extensive redistribution of NK cell subsets occurs in these patients. In addition, NK cells undergo a profound phenotypic change characterized, among others, by their increased proliferative capacity and immature phenotype. Importantly, MM patients who showed lower frequencies of the mature highly differentiated NKG2A-CD57+ NK cell subset at +30 and +100 days after autoHSCT experienced superior progression-free survival and had a longer time to the next treatment than those with higher frequencies. Our results provide significant insights into NK cell reconstitution after autoHSCT and suggest that the degree of NK cell maturation after autoHSCT affects the clinical outcome of MM patients treated with this therapeutic strategy.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1589
Author(s):  
Ane Orrantia ◽  
Iñigo Terrén ◽  
Gabirel Astarloa-Pando ◽  
Olatz Zenarruzabeitia ◽  
Francisco Borrego

Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.


2019 ◽  
Vol 3 (24) ◽  
pp. 4312-4325 ◽  
Author(s):  
Xiang-Yu Zhao ◽  
Xing-Xing Yu ◽  
Zheng-Li Xu ◽  
Xun-Hong Cao ◽  
Ming-Rui Huo ◽  
...  

Abstract The rate and extent of natural killer (NK)–cell education after hematopoietic cell transplantation correlates with leukemia control. To study the effect of donor and host HLA on NK-cell reconstitution, single killer-cell immunoglobulin-like receptor (KIR)+ NK cells (exhibiting KIR2DL1, KIR2DL2/KIR2DL3, or KIR3DL1 as their sole receptor) were grouped into 4 groups based on the interaction between donor/host HLA and donor inhibitory KIR in 2 cohorts (n = 114 and n = 276, respectively). On days 90 to 180 after transplantation, the absolute number and responsiveness against K562 cells (CD107a or interferon-γ expression) of single-KIR+ NK cells were higher in pairs where donor and host HLA both expressed ligands for donor inhibitory KIRs than in pairs where 1 or both of the donor and recipient HLA lacked at least 1 KIR ligand. NK-cell responsiveness was tuned commensurate with the number of inhibitory receptors from the donor. When both donor and host expressed the 3 major KIR ligands (HLA-C1, HLA-C2, and HLA-Bw4), NK cells expressing 3 inhibitory receptors (KIR2DL1/2DL3/3DL1) reached the maximum responsiveness against K562 cells compared with those NK cells expressing only 1 or 2 inhibitory receptors. When donor and host HLA both expressed all ligands for donor inhibitory KIRs, patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) showed the lowest recurrence rate after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). In conclusion, this study demonstrates that when both donors and hosts present all the KIR ligands for donor KIRs, reconstituted NK cells achieve better functional education and contribute to least relapse among patients. This observation study was registered at www.clinicaltrials.gov as #NCT02978274.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3189 ◽  
Author(s):  
Maite Alvarez ◽  
Cordelia Dunai ◽  
Lam T. Khuat ◽  
Ethan G. Aguilar ◽  
Isabel Barao ◽  
...  

The failure of autologous hematopoietic stem cell transplantation (HSCT) has been associated with a profound immunodeficiency that follows shortly after treatment, which renders patients susceptible to opportunistic infections and/or cancer relapse. Thus, given the additional immunosuppressive pathways involved in immune evasion in cancer, strategies that induce a faster reconstitution of key immune effector cells are needed. Natural killer (NK) cells mediate potent anti-tumor effector functions and are the first immune cells to repopulate after HSCT. TGF-β is a potent immunosuppressive cytokine that can impede both the development and function of immune cells. Here, we evaluated the use of an immunotherapeutic regimen that combines low dose of IL-2, an NK cell stimulatory signal, with TGF-β neutralization, in order to accelerate NK cell reconstitution following congenic HSCT in mice by providing stimulatory signals yet also abrogating inhibitory ones. This therapy led to a marked expansion of NK cells and accelerated NK cell maturation. Following HSCT, mature NK cells from the treated recipients displayed an activated phenotype and enhanced anti-tumor responses both in vitro and in vivo. No overt toxicities or adverse effects were observed in the treated recipients. However, these stimulatory effects on NK cell recovery were predicated upon continuous treatment as cessation of treatment led to return to baseline levels and to no improvement of overall immune recovery when assessed at later time-points, indicating strict regulatory control of the NK cell compartment. Overall, this study still demonstrates that therapies that combine positive and negative signals can be plausible strategies to accelerate NK cell reconstitution following HSCT and augment anti-tumor efficacy.


2016 ◽  
Vol 50 (4) ◽  
pp. 402-408 ◽  
Author(s):  
Matevz Skerget ◽  
Barbara Skopec ◽  
Darja Zontar ◽  
Peter Cernelc

Abstract Background Autologous hematopoietic stem cell transplantation is considered the standard of care for younger patients with multiple myeloma. Several mobilization regimens are currently used, most commonly growth factors alone or in combination with chemotherapy. The aim of our study was to investigate the differences in lymphocyte subpopulation counts between three different mobilization regimens on collection day, in the leukapheresis product and on day 15 after autologous hematopoietic stem cell transplantation. Patients and methods In total 48 patients were prospectively enrolled in three different mobilization regimens; (i) filgrastim (20), (ii) pegfilgrastim (19) and (iii) cyclophosphamide + filgrastim (9). Lymphocytes, CD16+/56+ natural killer and CD4+/CD25high T regulatory cells were determined by flow cytometry. Results We found a statistically significant difference between the mobilization regimens. Cyclophosphamide reduced lymphocyte and natural killer (NK) cell counts on collection day (lymphocytes 1.08 × 109/L; NK cells 0.07 × 109/L) compared to filgrastim (lymphocytes 3.08 × 109/L; NK cells 0.52 × 109/L) and pegfilgrastim (lymphocytes 3 × 109/L; NK cells 0.42 × 109/L). As a consequence lymphocyte and NK cell counts were also lower in the leukapheresis products following cyclophosphamide mobilization regimen (lymphocytes 50.1 × 109/L; NK cells 4.18 × 109/L) compared to filgrastim (lymphocytes 112 × 109/L; NK cells 17.5 × 109/L) and pegfilgrastim (lymphocytes 112 × 109/L; NK cells 14.3 × 109/L). In all mobilization regimens T regulatory cells increased 2-fold on collection day, regarding the base line value before mobilization. There was no difference in T regulatory cell counts between the regimens. Conclusions Mobilization with cyclophophamide reduces the number of mobilized and collected lymphocytes and NK cells as compared to mobilization with growth factors only and results in their delayed reconstitution following autologous hematopoietic stem cell transplantation. We found no difference between filgrastim and pegfilgrastim mobilization.


2020 ◽  
Vol 9 (11) ◽  
pp. 3502
Author(s):  
Tereza Dekojová ◽  
Lucie Houdová ◽  
Jiří Fatka ◽  
Pavel Pitule ◽  
Pavel Ostašov ◽  
...  

Killer-immunoglobulin-like receptors (KIRs) are critical natural killer (NK) cell regulators. The expression of KIRs is a dynamic process influenced by many factors. Their ligands—HLA(Human Leukocyte Antigen) class I molecules—are expressed on all nucleated cells that keep NK cells under control. In hematopoietic stem cell transplantation (HSCT), NK cells play an essential role in relapse protection. In the presented pilot study, we characterized the dynamic expression of inhibitory KIRS (iKIRs), which protect cells against untoward lysis, in donors and patients during the first three months after HSCT using flow cytometry. The expression of all iKIRs was highly variable and sometimes correlated with patients’ clinical presentation and therapy regiment. Cyclophosphamide (Cy) in the graft-versus-host disease (GvHD) prevention protocol downregulated KIR2DL1 to just 25% of the original donor value, and the FEAM (Fludarabine + Etoposid + Ara-C + Melphalan) conditioning protocol reduced KIR2DL3. In lymphoid neoplasms, there was a slightly increased KIR2DL3 expression compared to myeloid malignancies. Additionally, we showed that the ex vivo activation of NK cells did not alter the level of iKIRs. Our study shows the influence of pre- and post-transplantation protocols on iKIR expression on the surface of NK cells and the importance of monitoring their cell surface.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 708-710 ◽  
Author(s):  
Martin Stern ◽  
Loredana Ruggeri ◽  
Marusca Capanni ◽  
Antonella Mancusi ◽  
Andrea Velardi

Abstract Inhibitory killer cell immunoglobulin receptors (KIR) bind to major histocompatibility complex antigens. Concise knowledge of KIR ligands allows prediction of natural killer (NK)–cell alloreactivity after hematopoietic stem cell transplantation. KIR3DL1 binds to the Bw4 epitope on HLA-B antigens. Although the same epitope is also found on 4 HLA-A antigens (HLA-A23/24/25/32), these are not currently regarded as KIR3DL1 ligands. We show that expression of HLA A*2301, A*2402, or A*3201 but not HLA A*2501 protects target cells from lysis by KIR3DL1+ NK cells. KIR3DL1+ NK cells from donors expressing the Bw4 epitope on an HLA-A antigen only are fully functional and capable of lysing Bw4− target cells. HLA A25 differs at amino acid 90, close to the serologic Bw4 epitope, from A23/24/32 and from Bw4+ HLA-B antigens. These data suggest that HLA-A antigens should be taken into consideration when assessing the potential for NK alloreactivity after hematopoietic stem cell transplantation.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3488-3499 ◽  
Author(s):  
Luca Vago ◽  
Barbara Forno ◽  
Maria Pia Sormani ◽  
Roberto Crocchiolo ◽  
Elisabetta Zino ◽  
...  

AbstractIn this study, we have characterized reconstitution of the natural killer (NK) cell repertoire after haploidentical CD34+ selected hematopoietic stem cell transplantation (HSCT) for high-risk hematologic malignancies. Analysis focused on alloreactive single-KIR+ NK cells, which reportedly are potent antileukemic effectors. One month after HSCT, CD56bright/CD56dim NK-cell subsets showed inverted ratio and phenotypic features. CD25 and CD117 down-regulation on CD56bright, and NKG2A and CD62L up-regulation on CD56dim, suggest sequential CD56bright-to-CD56dim NK-cell maturation in vivo. Consistently, the functional potential of these maturation intermediates against leukemic blasts was impaired. Mature receptor repertoire reconstitution took at least 3 months. Importantly, at this time point, supposedly alloreactive, single-KIR+ NK cells were not yet fully functional. Frequency of these cells was highly variable, independently from predicted NK alloreactivity, and below 1% of NK cells in 3 of 6 alloreactive patients studied. In line with these observations, no clinical benefit of predicted NK alloreactivity was observed in the total cohort of 56 patients. Our findings unravel the kinetics, and limits, of NK-cell differentiation from purified haploidentical hematopoietic stem cells in vivo, and suggest that NK-cell antileukemic potential could be best exploited by infusion of mature single-KIR+ NK cells selected from an alloreactive donor.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 227-233 ◽  
Author(s):  
Can M. Sungur ◽  
William J. Murphy

Abstract Natural killer (NK) cells represent a key component of innate immunity. The utility of mouse models to recapitulate the human immune response has been a matter of ongoing debate, especially with regard to NK cells. However, mouse models of NK cells have provided significant advancements in our understanding of the biology of the cells that bridge these species. Initial characterization of NK cell activity was in mouse hematopoietic stem cell transplantation models. Recent findings include uncovering functionally disparate subsets of NK cells based on unique inhibitory receptor expression patterns, the existence of memory-like NK cells, and immunoregulatory NK cells that affect hematopoiesis and T-cell function. In addition, the biology of these cells with regard to MHC-binding receptors that affect NK cell subset maturation and function in the context of licensing, the importance of cytokines such as IL-15 in their development and maintenance, and evidence of NK exhaustion have been initially studied in mice. Many of these findings have been validated in clinical studies and demonstrate the significant wealth of knowledge that can be obtained by mouse models. However, it is important to understand the limitations and conditions of the mouse models, particularly when studying NK cells in hematopoietic stem cell transplantation and cancer.


Sign in / Sign up

Export Citation Format

Share Document