scholarly journals Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine

2021 ◽  
Vol 8 ◽  
Author(s):  
Avi Putri Pertiwi ◽  
Chengfa Benjamin Lee ◽  
Dimosthenis Traganos

The lack of clarity in turbid coastal waters interferes with light attenuation and hinders remotely sensed studies in aquatic ecology such as benthic habitat mapping and bathymetry estimation. Although turbid water column corrections can be applied on regions with seasonal turbidity by performing multi-temporal analysis, different approaches are needed in regions where the water is constantly turbid or only exhibits subtle turbidity variations through time. This study aims to detect these turbid zones (TZs) in optically shallow coastal waters using multi-temporal Sentinel-2 surface reflectance datasets to improve the aforementioned studies. The herein framework can be paired with other aquatic ecology remote sensing studies to establish the clear water focus area and can also be used by decision makers to identify rehabilitation areas. We selected the coastlines of Guinea-Bissau, Tunisia, and west Madagascar as our case studies which feature wide-ranging turbidity intensities across tropical, subtropical, and Mediterranean waters and applied three different methods for the TZ detection: Otsu’s method for bimodal thresholding, linear spectral unmixing, and Random Forest (RF) machine learning method on Google Earth Engine as an end-to-end process. Based on our experiments, the RF method yields good results in all study regions with overall accuracies ranging between 88 and 96% and F1-scores between 0.87 and 0.96. TZ detection is highly site-specific due to the inter-class variability that is mainly affected by the nature of the suspended materials and the environmental characteristics of the site.

2021 ◽  
pp. 777
Author(s):  
Andi Tenri Waru ◽  
Athar Abdurrahman Bayanuddin ◽  
Ferman Setia Nugroho ◽  
Nita Rukminasari

Pulau Tanakeke merupakan salah satu pulau dengan hutan mangrove yang luas di pesisir Sulawesi Selatan. Hutan mangrove ini menjadi ekosistem penting bagi masyarakat sekitar karena nilai ekologi maupun ekonominya. Namun, dalam kurun waktu sekitar tahun 1980-2000, keberadaan mangrove tersebut terancam oleh perubahan penggunaan lahan dan juga pemanfaatan yang berlebihan. Penelitian ini bertujuan untuk menganalisis perubahan temporal luas dan tingkat kerapatan hutan mangrove di Pulau Tanakeke antara tahun 2016 dan 2019. Metode analisis perubahan luasan hutan mangrove menggunakan data citra satelit Sentinel-2 multi temporal berdasarkan hasil klasifikasi hutan mangrove dengan menggunakan random forest pada platform Google Earth Engine. Akurasi keseluruhan hasil klasifikasi hutan mangrove tahun 2016 dan 2019 sebesar 91% dan 98%. Berdasarkan hasil analisis spasial diperoleh perubahan penurunan luasan mangrove yang signifikan dari 800,21 ha menjadi 640,15 ha. Kerapatan mangrove di Pulau Tanakeke sebagian besar tergolong kategori dalam kerapatan tinggi.


2021 ◽  
Vol 10 (7) ◽  
pp. 464
Author(s):  
Jiansong Luo ◽  
Xinwen Ma ◽  
Qifeng Chu ◽  
Min Xie ◽  
Yujia Cao

Land use and land cover (LULC) are fundamental units of human activities. Therefore, it is of significance to accurately and in a timely manner obtain the LULC maps where dramatic LULC changes are undergoing. Since 2017 April, a new state-level area, Xiong’an New Area, was established in China. In order to better characterize the LULC changes in Xiong’an New Area, this study makes full use of the multi-temporal 10-m Sentinel-2 images, the cloud-computing Google Earth Engine (GEE) platform, and the powerful classification capability of random forest (RF) models to generate the continuous LULC maps from 2017 to 2020. To do so, a novel multiple RF-based classification framework is adopted by outputting the classification probability based on each monthly composite and aggregating the multiple probability maps to generate the final classification map. Based on the obtained LULC maps, this study analyzes the spatio-temporal changes of LULC types in the last four years and the different change patterns in three counties. Experimental results indicate that the derived LULC maps achieve high accuracy for each year, with the overall accuracy and Kappa values no less than 0.95. It is also found that the changed areas account for nearly 36%, and the dry farmland, impervious surface, and other land-cover types have changed dramatically and present varying change patterns in three counties, which might be caused by the latest planning of Xiong’an New Area. The obtained 10-m four-year LULC maps in this study are supposed to provide some valuable information on the monitoring and understanding of what kinds of LULC changes have taken place in Xiong’an New Area.


Author(s):  
C. M. Arellano ◽  
A. A. Maralit ◽  
E. C. Paringit ◽  
C. J. Sarmiento ◽  
R. A. Faelga ◽  
...  

Abstract. Radar data has been historically expensive and complex to process. However, in this milieu of cloud-computing platforms and open-source datasets, radar data analysis has become convenient and can now be performed for more exploratory researches. This study aims to perform multi-temporal analysis of radar backscatter to characterize dense and sparse forest from Sentinel-1 images. The area of study are reforested sites under the National Greening Program (NGP) of the Philippines. Ground data were collected: (1) in 2019, from a 1.35 ha -site in Brgy. Calula, Ipil, Zamboanga Sibugay, (2) in 2019, from a 1.10 ha- site in Brgy. Cabatuanan, Basay, Negros Oriental, and (3) from PhilLiDAR 2 – Project 3: FRExLS’ 2.4 ha -validated site in Ubay, Bohol. SAR intensity values were derived from Sentinel-1 from Google Earth Engine, which is a cloud-based platform with a repository of satellite images and functionalities for data extraction and processing. The temporal variation in C-band radar backscatter from 2014 to 2018 were analyzed. The results show, for the whole period of analysis, that: in VH polarization, dense forest samples backscatter range from −11 to −18 dB in VH and −2 to -13 dB in VV; sparse forest samples range from −12 to -21 dB in VH and −7 to −14 dB in VV; ground samples range from −12 to −24 dB in VH and −6 to −15 dB in VV; and water samples range from −21 to −30 dB in VH and −11 to −26 dB in VV. Forest backscatter are expected to saturate over time, especially in dense forests. These variations are due to differences in forest species, landscape, environmental and climatic drivers, and phenomenon or interventions on the site.


Author(s):  
M. Schmitt ◽  
L. H. Hughes ◽  
C. Qiu ◽  
X. X. Zhu

<p><strong>Abstract.</strong> Cloud coverage is one of the biggest concerns in spaceborne optical remote sensing, because it hampers a continuous monitoring of the Earth’s surface. Based on Google Earth Engine, a web- and cloud-based platform for the analysis and visualization of large-scale geospatial data, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for user-defined areas of interest and time periods, which can be significantly shorter than the one-year time frames that are commonly used in other multi-temporal image aggregation approaches. We demonstrate the feasibility of our workflow for several cities spread around the globe and affected by different amounts of average cloud cover. The experimental results confirm that our results are better than the results achieved by standard approaches for cloud-free image aggregation.</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


2021 ◽  
Vol 11 (9) ◽  
pp. 4258
Author(s):  
Jordan R. Cissell ◽  
Steven W. J. Canty ◽  
Michael K. Steinberg ◽  
Loraé T. Simpson

In this paper, we present the highest-resolution-available (10 m) national map of the mangrove ecosystems of Belize. These important ecosystems are increasingly threatened by human activities and climate change, support both marine and terrestrial biodiversity, and provide critical ecosystem services to coastal communities in Belize and throughout the Mesoamerican Reef ecoregion. Previous national- and international-level inventories document Belizean mangrove forests at spatial resolutions of 30 m or coarser, but many mangrove patches and loss events may be too small to be accurately mapped at these resolutions. Our 10 m map addresses this need for a finer-scale national mangrove inventory. We mapped mangrove ecosystems in Belize as of 2020 by performing a random forest classification of Sentinel-2 Multispectral Instrument imagery in Google Earth Engine. We mapped a total mangrove area of 578.54 km2 in 2020, with 372.04 km2 located on the mainland and 206.50 km2 distributed throughout the country’s islands and cayes. Our findings are substantially different from previous, coarser-resolution national mangrove inventories of Belize, which emphasizes the importance of high-resolution mapping efforts for ongoing conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document