scholarly journals All-Inorganic Perovskite Solar Cells With Both High Open-Circuit Voltage and Stability

2020 ◽  
Vol 6 ◽  
Author(s):  
Lei Zhang ◽  
Tianle Hu ◽  
Jinglei Li ◽  
Lin Zhang ◽  
Hongtao Li ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Wang ◽  
Jie Zhang ◽  
Yingzhi Zhou ◽  
Hongbin Liu ◽  
Qifan Xue ◽  
...  

AbstractAll-inorganic perovskite solar cells (PVSCs) have drawn increasing attention because of their outstanding thermal stability. However, their performance is still inferior than the typical organic-inorganic counterparts, especially for the devices with p-i-n configuration. Herein, we successfully employ a Lewis base small molecule to passivate the inorganic perovskite film, and its derived PVSCs achieved a champion efficiency of 16.1% and a certificated efficiency of 15.6% with improved photostability, representing the most efficient inverted all-inorganic PVSCs to date. Our studies reveal that the nitrile (C-N) groups on the small molecule effectively reduce the trap density of the perovskite film and thus significantly suppresses the non-radiative recombination in the derived PVSC by passivating the Pb-exposed surface, resulting in an improved open-circuit voltage from 1.10 V to 1.16 V after passivation. This work provides an insight in the design of functional interlayers for improving efficiencies and stability of all-inorganic PVSCs.


Author(s):  
Pietro Caprioglio ◽  
Fengshuo Zu ◽  
Christian M. Wolff ◽  
Martin Stolterfhot ◽  
Norbert Koch ◽  
...  

Solar RRL ◽  
2021 ◽  
Author(s):  
Nathan Daem ◽  
Jennifer Dewalque ◽  
Felix Lang ◽  
Anthony Maho ◽  
Gilles Spronck ◽  
...  

2019 ◽  
Vol 9 (33) ◽  
pp. 1901631 ◽  
Author(s):  
Pietro Caprioglio ◽  
Martin Stolterfoht ◽  
Christian M. Wolff ◽  
Thomas Unold ◽  
Bernd Rech ◽  
...  

Solar RRL ◽  
2021 ◽  
pp. 2000811
Author(s):  
Miriam Más-Montoya ◽  
David Curiel ◽  
Junke Wang ◽  
Bardo J. Bruijnaers ◽  
René A. J. Janssen

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


Sign in / Sign up

Export Citation Format

Share Document